7,470 research outputs found

    Improving regulatory standards for clearing facilities

    Get PDF
    Clearinghouses (Banking) ; Payment systems

    Measurement of the energy dependence of phase relaxation by single electron tunneling

    Full text link
    Single electron tunneling through a single impurity level is used to probe the fluctuations of the local density of states in the emitter. The energy dependence of quasi-particle relaxation in the emitter can be extracted from the damping of the fluctuations of the local density of states (LDOS). At larger magnetic fields Zeeman splitting is observed.Comment: 2 pages, 4 figures; 25th International Conference on the Physics of Semiconductors, Osaka, Japan, September 17-22, 200

    Electron release of rare gas atom clusters under an intense laser pulse

    Full text link
    Calculating the energy absorption of atomic clusters as a function of the laser pulse length TT we find a maximum for a critical T∗T^*. We show that T∗T^* can be linked to an optimal cluster radius R∗R^*. The existence of this radius can be attributed to the enhanced ionization mechanism originally discovered for diatomic molecules. Our findings indicate that enhanced ionization should be operative for a wide class of rare gas clusters. From a simple Coulomb explosion ansatz, we derive an analytical expression relating the maximum energy release to a suitably scaled expansion time which can be expressed with the pulse length T∗T^*.Comment: 4 pages, 5 figure

    Tunable graphene system with two decoupled monolayers

    Get PDF
    The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them

    A discrete time-dependent method for metastable atoms in intense fields

    Full text link
    The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium and hydrogen atoms and molecules are presented. At very high intensity above saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments.Comment: 10 pages, 9 figure, 4 table

    Gate-tunable bandgap in bilayer graphene

    Full text link
    The tight-binding model of bilayer graphene is used to find the gap between the conduction and valence bands, as a function of both the gate voltage and as the doping by donors or acceptors. The total Hartree energy is minimized and the equation for the gap is obtained. This equation for the ratio of the gap to the chemical potential is determined only by the screening constant. Thus the gap is strictly proportional to the gate voltage or the carrier concentration in the absence of donors or acceptors. In the opposite case, where the donors or acceptors are present, the gap demonstrates the asymmetrical behavior on the electron and hole sides of the gate bias. A comparison with experimental data obtained by Kuzmenko et al demonstrates the good agreement.Comment: 6 pages, 5 figure

    In search of ‘lost’ knowledge and outsourced expertise in flood risk management

    Get PDF
    This paper examines the parallel discourses of ‘lost’ local flood expertise and the growing use of commercial consultancies to outsource aspects of flood risk work. We critically examine the various claims and counter-claims about lost, local and external expertise in flood management, focusing on the aftermath of the 2007 floods in East Yorkshire, England. Drawing on interviews with consultants, drainage engineers and others, we caution against claims that privilege ‘local’ floods knowledge as ‘good’ and expert knowledge as somehow suspect. This paper urges carefulness in interpreting claims about local knowledge, arguing that it is important always to think instead of hybrid knowledge formations. We conclude by arguing that experiments in the co-production of flood risk knowledge need to be seen as part of a spectrum of ways for producing shared knowledge

    A glimpse into the differential topology and geometry of optimal transport

    Full text link
    This note exposes the differential topology and geometry underlying some of the basic phenomena of optimal transportation. It surveys basic questions concerning Monge maps and Kantorovich measures: existence and regularity of the former, uniqueness of the latter, and estimates for the dimension of its support, as well as the associated linear programming duality. It shows the answers to these questions concern the differential geometry and topology of the chosen transportation cost. It also establishes new connections --- some heuristic and others rigorous --- based on the properties of the cross-difference of this cost, and its Taylor expansion at the diagonal.Comment: 27 page

    Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes.

    Get PDF
    We consider the effective mass model of spinless electrons in single wall carbon nanotubes that is equivalent to the Dirac equation for massless fermions. Within this framework we derive all possible energy independent hard wall boundary conditions that are applicable to metallic tubes. The boundary conditions are classified in terms of their symmetry properties and we demonstrate that the use of different boundary conditions will result in varying degrees of valley degeneracy breaking of the single particle energy spectrum
    • …
    corecore