97 research outputs found

    In Vivo Analysis of Trypanosoma cruzi Persistence Foci at Single-Cell Resolution.

    Get PDF
    Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the parasite burden during chronic infections is extremely low. Here, we describe an integrated approach involving comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which allowed us to visualize infected host cells in murine tissue with exquisite sensitivity. Using bioluminescence-guided tissue sampling, with a detection level of 200 parasites, which we term mega-nests. In contrast, during the acute stage, when the total parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely found. In C3H/HeN mice, but not BALB/c mice, we identified skeletal muscle as a major site of persistence during the chronic stage, with most parasites being found in large mega-nests within the muscle fibers. Finally, we report that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role in insect-mediated transmission and have implications for drug development.IMPORTANCE Trypanosoma cruzi causes Chagas disease, the most important parasitic infection in Latin America. Major pathologies include severe damage to the heart and digestive tract, although symptoms do not usually appear until decades after infection. Research has been hampered by the complex nature of the disease and technical difficulties in locating the extremely low number of parasites. Here, using highly sensitive imaging technology, we reveal the sites of parasite persistence during chronic-stage infections of experimental mice at single-cell resolution. We show that parasites are frequently located in smooth muscle cells in the circular muscle layer of the colon and that skeletal muscle cells and the skin can also be important reservoirs. This information provides a framework for investigating how the parasite is able to survive as a lifelong infection, despite a vigorous immune response. It also informs drug development strategies by identifying tissue sites that must be accessed to achieve a curative outcome

    Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies

    Get PDF
    Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine

    A synthetic biology based cell line engineering pipeline

    Get PDF
    An ideal host cell line for deriving cell lines of high recombinant protein production should be stable, predictable, and amenable to rapid cell engineering or other forms of phenotypical manipulation. In the past few years we have employed genomic information to identify “safe harbors” for exogenous gene integration in CHO cells, deployed systems modeling and optimization to design pathways and control strategies to modify important aspects of recombinant protein productivity, and established a synthetic biology approach to implement genetic changes, all with the goal of creating a pipeline to produce “designer” cell lines. Chinese hamster ovary (CHO) cells are the preferred platform for protein production. However, the Chinese hamster genome is unstable in its ploidy, is subject to long and short deletions, duplications, and translocations. In addition, gene expression is subject to epigenetic changes including DNA methylation, histone modification and heterochromatin invasion, thus further complicating transgene expression for protein production in cell lines. With these issues in mind, we set out to engineer a CHO cell line highly amenable to stable protein production using a synthetic biology approach. We compiled karyotyping and chromosome number data of several CHO cell lines and sublines, identified genomic regions with high a frequency of gain and loss of copy number using comparative genome hybridization (CGH), and verified structural variants using sequencing data. We further used ATAC (Assay for Transposase-Accessible Chromatin) sequencing to study chromatin accessibility and epigenetic stability within the CHO genome. RNA-seq data from multiple cell lines were also used to identify regions with high transcriptional activity. Analysis of these data allowed the identification of several “safe harbor” loci that could be used for cell engineering. Based on results of the data analysis and identification of “safe harbors”, we engineered an IgG producing cell line with a single copy of the product transgene as a template cell line. This product gene site is flanked by sequences for recombinase mediated cassette exchange, therefore allowing easy substitution of the IgG producing gene for an alternative product gene. Furthermore, a “landing pad” for multi-gene cassette insertion was integrated into the genome at an additional site. Together, these sites allowed engineering of new cell lines producing a fusion protein and Erythropoietin to be generated from the template cell line. To enable rapid assembly of product transgenes and genetic elements for engineering cell attributes into multi-gene cassettes, we adopted a golden-gate based synthetic biology approach. The assembly of genetic parts into multi-gene cassettes in a LEGO-like fashion allowed different combinations of genes under the control of various promoters to be generated quickly for introduction into the template cell line. Using this engineered CHO cell line, we set out to study metabolism and product protein glycosylation for cell engineering. To guide the selection of genetic elements for cell engineering, we developed a multi-compartment kinetic model, as well as a flux model of energy metabolism and glycosylation. The transcriptome meta-data was used extensively to identify genes and isoforms expressed in the cell line and to estimate the enzyme levels in the model. The flux model was used to identify and the LEGO-like platform was used to implement the genetic changes that can alter the glycosylation pattern of the IgG produced by the template cell line. Concurrently we employed a systems optimization approach to identify the genetic alterations in the metabolic pathway to guide cell metabolism toward a favorable state. The model prediction is being implemented experimentally using the synthetic biology approach. In conclusion, we have illustrated a pipeline of rational cell line engineering that integrates genomic science, systems engineering and synthetic biology approaches. The promise, the technical challenges and possible limitations will be discussed in this presentation

    In vivo transplantation of enteric neural crest cells into mouse gut; Engraftment, functional integration and long-term safety

    Get PDF
    Objectives: Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety. Design: Neurospheres gene

    Synchronisation of apical constriction and cell cycle progression is a conserved behaviour of pseudostratified neuroepithelia informed by their tissue geometry

    Get PDF
    Neuroepithelial cells balance tissue growth requirement with the morphogenetic imperative of closing the neural tube. They apically constrict to generate mechanical forces which elevate the neural folds, but are thought to apically dilate during mitosis. However, we previously reported that mitotic neuroepithelial cells in the mouse posterior neuropore have smaller apical surfaces than non-mitotic cells. Here, we document progressive apical enrichment of non-muscle myosin-II in mitotic, but not non-mitotic, neuroepithelial cells with smaller apical areas. Live-imaging of the chick posterior neuropore confirms apical constriction synchronised with mitosis, reaching maximal constriction by anaphase, before division and re-dilation. Mitotic apical constriction amplitude is significantly greater than interphase constrictions. To investigate conservation in humans, we characterised early stages of iPSC differentiation through dual SMAD-inhibition to robustly produce pseudostratified neuroepithelia with apically enriched actomyosin. These cultured neuroepithelial cells achieve an equivalent apical area to those in mouse embryos. iPSC-derived neuroepithelial cells have large apical areas in G2 which constrict in M phase and retain this constriction in G1/S. Given that this differentiation method produces anterior neural identities, we studied the anterior neuroepithelium of the elevating mouse mid-brain neural tube. Instead of constricting, mid-brain mitotic neuroepithelial cells have larger apical areas than interphase cells. Tissue geometry differs between the apically convex early midbrain and flat posterior neuropore. Culturing human neuroepithelia on equivalently convex surfaces prevents mitotic apical constriction. Thus, neuroepithelial cells undergo high-amplitude apical constriction synchronised with cell cycle progression but the timing of their constriction if influenced by tissue geometry

    Local association of Trypanosoma cruzi chronic infection foci and enteric neuropathic lesions at the tissue micro-domain scale.

    Get PDF
    Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. The mechanism of pathogenesis is poorly understood and the lack of a robust, predictive animal model has held back research. We screened a series of mouse models using gastrointestinal tracer assays and in vivo infection imaging systems to discover a subset exhibiting chronic digestive transit dysfunction and significant retention of faeces in both sated and fasted conditions. The colon was a specific site of both tissue parasite persistence, delayed transit and dramatic loss of myenteric neurons as revealed by whole-mount immunofluorescence analysis. DCD mice therefore recapitulated key clinical manifestations of human disease. We also exploited dual reporter transgenic parasites to home in on locations of rare chronic infection foci in the colon by ex vivo bioluminescence imaging and then used fluorescence imaging in tissue microdomains to reveal co-localisation of infection and enteric nervous system lesions. This indicates that long-term T. cruzi-host interactions in the colon drive DCD pathogenesis, suggesting that the efficacy of anti-parasitic chemotherapy against chronic disease progression warrants further pre-clinical investigation

    Combined treatment with enteric neural stem cells and chondroitinase ABC reduces spinal cord lesion pathology

    Get PDF
    Background: Spinal cord injury (SCI) presents a significant challenge for the field of neurotherapeutics. Stem cells have shown promise in replenishing the cells lost to the injury process, but the release of axon growth-inhibitory molecules such as chondroitin sulfate proteoglycans (CSPGs) by activated cells within the injury site hinders the integration of transplanted cells. We hypothesised that simultaneous application of enteric neural stem cells (ENSCs) isolated from the gastrointestinal tract, with a lentivirus (LV) containing the enzyme chondroitinase ABC (ChABC), would enhance the regenerative potential of ENSCs after transplantation into the injured spinal cord. Methods: ENSCs were harvested from the GI tract of p7 rats, expanded in vitro and characterised. Adult rats bearing a contusion injury were randomly assigned to one of four groups: no treatment, LV-ChABC injection only, ENSC transplantation only or ENSC transplantation+LV-ChABC injection. After 16 weeks, rats were sacrificed and the harvested spinal cords examined for evidence of repair. Results: ENSC cultures contained a variety of neuronal subtypes suitable for replenishing cells lost through SCI. Following injury, transplanted ENSC-derived cells survived and ChABC successfully degraded CSPGs. We observed significant reductions in the injured tissue and cavity area, with the greatest improvements seen in the combined treatment group. ENSC-derived cells extended projections across the injury site into both the rostral and caudal host spinal cord, and ENSC transplantation significantly increased the number of cells extending axons across the injury site. Furthermore, the combined treatment resulted in a modest, but significant functional improvement by week 16, and we found no evidence of the spread of transplanted cells to ectopic locations or formation of tumours. Conclusions: Regenerative effects of a combined treatment with ENSCs and ChABC surpassed either treatment alone, highlighting the importance of further research into combinatorial therapies for SCI. Our work provides evidence that stem cells taken from the adult gastrointestinal tract, an easily accessible source for autologous transplantation, could be strongly considered for the repair of central nervous system disorders

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    Get PDF
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning
    corecore