105 research outputs found

    Quantum states and intertwining phases in kagome materials

    Full text link
    In solid materials, nontrivial topological states, electron correlations, and magnetism are central ingredients for realizing quantum properties, including unconventional superconductivity, charge and spin density waves, and quantum spin liquids. The Kagome lattice, made up of connected triangles and hexagons, can host these three ingredients simultaneously and has proven to be a fertile platform for studying diverse quantum phenomena including those stemming from the interplay of these ingredients. In this review, we introduce the fundamental properties of the Kagome lattice as well as discuss the complex observed phenomena seen in several emergent material systems such as the intertwining of charge order and superconductivity in some Kagome metals, modulation of magnetism and topology in some Kagome magnets, and symmetry breaking with Mott physics in the breathing Kagome insulators. We also highlight many open questions in the field as well as future research directions of Kagome systems

    Surface and Bulk Structural Properties of Single Crystalline Sr3Ru2O7

    Full text link
    We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-crystal X-ray diffraction (XRD) techniques, respectively. Single-crystal XRD data is in good agreement with previous reports for the bulk structure with RuO6 octahedral rotation, which increases with decreasing temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED results reveal that the octahedra at the surface are much more distorted with a higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt ((4.5\pm2.5) degrees at 300 K and (2.5\pm1.7) degrees at 80 K). While XRD data confirms temperature dependence of the unit cell height/width ratio (i.e. lattice parameter c divided by the average of parameters a and b) found in a prior neutron powder diffraction investigation, both bulk and surface structures display little change with thermal cycles between 300 and 80 K.Comment: 25 pages, 5 figures, 5 tables, to appear in Physical Review

    Spin Density wave instability in a ferromagnet

    Get PDF
    Ferromagnetic (FM) and incommensurate spin-density wave (ISDW) states are an unusual set of competing magnetic orders that are seldom observed in the same material without application of a polarizing magnetic field. We report, for the first time, the discovery of an ISDW state that is derived from a FM ground state through a Fermi surface (FS) instability in Fe3_3Ga4_4. This was achieved by combining neutron scattering experiments with first principles simulations. Neutron diffraction demonstrates that Fe3_3Ga4_4 is in an ISDW state at intermediate temperatures and that there is a conspicuous re-emergence of ferromagnetism above 360 K. First principles calculations show that the ISDW ordering wavevector is in excellent agreement with a prominent nesting condition in the spin-majority FS demonstrating the discovery of a novel instability for FM metals; ISDW formation due to Fermi surface nesting in a spin-polarized Fermi surface.Comment: 6 pages with 4 figures. Supplemental Materials Include

    Evolution of Structural and Physical Properties of Sr3(Ru1-xMnx)2O7 with Mn Concentration

    Get PDF
    Layered ruthenates are prototype materials with strong structure-property correlations. We report the structural and physical properties of double-layered perovskite Sr3(Ru1-xMnx)2O7 single crystals with 0<=x<=0.7. Single crystal x-ray diffraction refinements reveal that Mn doping on the Ru site leads to the shrinkage of unit-cell volume and disappearance of (Ru/Mn)O6 octahedron rotation when x>0.16, while the crystal structure remains tetragonal. Correspondingly, the electric and magnetic properties change with x. The electrical resistivity reveals metallic character (d rho/d T>0) at high temperatures but insulating behavior (d rho/d T<0) below a characteristic temperature T_MIT. Interestingly, T_MIT is different from T_M, at which magnetic susceptibility reaches maximum. T_MIT monotonically increases with increasing x while T_M shows non-monotonic dependence with x. The difference between T_MIT and T_M (T_MIT>T_M) becomes larger when x>0.16. The constructed phase diagram consists of five distinct regions, demonstrating that the physical properties of such a system can easily be tuned by chemical doping.Comment: 5 pages, 4 figure

    A new spin-anisotropic harmonic honeycomb iridate

    Full text link
    The physics of Mott insulators underlies diverse phenomena ranging from high temperature superconductivity to exotic magnetism. Although both the electron spin and the structure of the local orbitals play a key role in this physics, in most systems these are connected only indirectly --- via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) open a further dimension to this problem by introducing strong spin-orbit interactions, such that the Mott physics has a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin-anisotropic interactions, coupling the spin orientation to a given spatial direction of exchange and leading to strongly frustrated magnetism. The potential for new physics emerging from such interactions has driven much scientific excitement, most recently in the search for a new quantum spin liquid, first discussed by Kitaev \cite{kitaev_anyons_2006}. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb, but in a three-dimensional framework. The temperature dependence of the magnetic susceptibility exhibits a striking reordering of the magnetic anisotropy, giving evidence for highly spin-anisotropic exchange interactions. Furthermore, the basic structural units of this material suggest the possibility of a new family of structures, the `harmonic honeycomb' iridates. This compound thus provides a unique and exciting glimpse into the physics of a new class of strongly spin-orbit coupled Mott insulators.Comment: 12 pages including bibliography, 5 figure
    corecore