39 research outputs found
Nanoporous Solid-State Sensitization of Triplet Fusion Upconversion
Photochemical upconversion of green to blue light is demonstrated in thin films of nanostructured alumina stained with a metalloporphyrin sensitizer. The pores of the structure are filled with emitter molecules in a concentrated solution, allowing efficient upconversion within the solid-state scaffold. The photon generation quantum yield is measured to be 9.4%, which is nearly 40% of what is possible with a diphenylanthracene emitter. These results show that high-efficiency upconversion is possible with solid-state sensitization within a nanostructured thin-film architecture
Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan
The economic value of a photovoltaic installation depends upon both its lifespan and power conversion efficiency. Progress toward the latter includes mechanisms to circumvent the Shockley-Queisser limit, such as tandem designs and multiple exciton generation (MEG). Here we explain how both silicon tandem and MEG-enhanced silicon cell architectures result in lower cell operating temperatures, increasing the device lifetime compared to standard c-Si cells. Also demonstrated are further advantages from MEG enhanced silicon cells: (i) the device architecture can completely circumvent the need for current-matching; and (ii) upon degradation, tetracene, a candidate singlet fission (a form of MEG) material, is transparent to the solar spectrum. The combination of (i) and (ii) mean that the primary silicon device will continue to operate with reasonable efficiency even if the singlet fission layer degrades. The lifespan advantages of singlet fission enhanced silicon cells, from a module perspective, are compared favorably alongside the highly regarded perovskite/silicon tandem and conventional c-Si modules
Power Dependence of the Magnetic Field Effect on Triplet Fusion: A Quantitative Model
Two strategies for improving solar energy efficiencies, triplet fusion and singlet fission, rely on the details of triplet-triplet interactions. In triplet fusion, there are several steps, each of which is a possible loss mechanism. In solution, the parameters describing triplet fusion collisions are difficult to inspect. Here we show that these parameters can be determined by examining the magnetic field dependence of triplet fusion upconversion. We show that there is a reduction of the magnetic field effect for perylene triplet fusion as the system moves from the quadratic to linear annihilation regimes with an increase in laser power. Our data are modeled with a small set of parameters that characterize the triplet fusion dynamics. These parameters are cross-validated with molecular dynamics simulations. This approach can be applied to both solution and solid state materials, providing a tool for screening potential annihilators for photon upconversion
Electrical detection of 31P spin quantum states
In recent years, a variety of solid-state qubits has been realized, including
quantum dots, superconducting tunnel junctions and point defects. Due to its
potential compatibility with existing microelectronics, the proposal by Kane
based on phosphorus donors in Si has also been pursued intensively. A key issue
of this concept is the readout of the P quantum state. While electrical
measurements of magnetic resonance have been performed on single spins, the
statistical nature of these experiments based on random telegraph noise
measurements has impeded the readout of single spin states. In this letter, we
demonstrate the measurement of the spin state of P donor electrons in silicon
and the observation of Rabi flops by purely electric means, accomplished by
coherent manipulation of spin-dependent charge carrier recombination between
the P donor and paramagnetic localized states at the Si/SiO2 interface via
pulsed electrically detected magnetic resonance. The electron spin information
is shown to be coupled through the hyperfine interaction with the P nucleus,
which demonstrates the feasibility of a recombination-based readout of nuclear
spins
Solid state quantum memory using the 31P nuclear spin
The transfer of information between different physical forms is a central
theme in communication and computation, for example between processing entities
and memory. Nowhere is this more crucial than in quantum computation, where
great effort must be taken to protect the integrity of a fragile quantum bit.
Nuclear spins are known to benefit from long coherence times compared to
electron spins, but are slow to manipulate and suffer from weak thermal
polarisation. A powerful model for quantum computation is thus one in which
electron spins are used for processing and readout while nuclear spins are used
for storage. Here we demonstrate the coherent transfer of a superposition state
in an electron spin 'processing' qubit to a nuclear spin 'memory' qubit, using
a combination of microwave and radiofrequency pulses applied to 31P donors in
an isotopically pure 28Si crystal. The electron spin state can be stored in the
nuclear spin on a timescale that is long compared with the electron decoherence
time and then coherently transferred back to the electron spin, thus
demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall
store/readout fidelity is about 90%, attributed to systematic imperfections in
radiofrequency pulses which can be improved through the use of composite
pulses. We apply dynamic decoupling to protect the nuclear spin quantum memory
element from sources of decoherence. The coherence lifetime of the quantum
memory element is found to exceed one second at 5.5K.Comment: v2: Tomography added and storage of general initial state
Role of incoherent dynamics in determining the electrical response of exciton-polaron complexes in pulsed magnetic resonance
Triplet-exciton polaron quenching can lead to large changes in sample conductivity in organic devices. The application of pulsed magnetic resonance leads to changes in the quenching process by coherently driving spin populations between different eigenstates. Here, we investigate the influence of the exciton-polaron dissociation, intersystem crossing, and recombination rates on the electrical response of a device following such resonant excitation. Although these incoherent processes often occur on time scales that are orders of magnitude slower than coherent mixing, we find that they have a major influence on the electrical response. For example, as the relative recombination and dissociation rates are varied, certain resonant transitions can become electrically invisible. We demonstrate that transitions between different regimes are determined by a dimensionless parameter χ=rd, the ratio of the recombination to the dissociation rate
Theory of triplet-triplet annihilation in optically detected magnetic resonance
Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique “Rabi fingerprints” for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian
Measuring spin relaxation with standard pulse sequences in the singlet-triplet basis
Pulsed electrically and optically-detected magnetic resonance are extremely sensitive to changes in the permutation symmetry of weakly-coupled spin pairs, and are well-suited for investigating devices with a small number of spins. However, the change in observable from conventional electron spin resonance modifies the results of standard inductively-detected pulse sequences which are routinely used to obtain phase coherence and lifetimes. Whilst these effects have been discussed for single-pulse experiments, their role in multi-pulse sequences is less clear. Here, we investigate this effect in Hahn echo and inversion-recovery sequences, and show a second set of narrower echoes are produced that distort measurement outcomes. We demonstrate that phase cycling is able to deconvolve the additional echo signals, allowing spin relaxation times to be reliably extracted
Recombination dynamics in thin-film photovoltaic materials via timeresolved microwave conductivity
A method for investigating recombination dynamics of photo-induced charge carriers in thin film semiconductors, specifically in photovoltaic materials such as organo-lead halide perovskites is presented. The perovskite film thickness and absorption coefficient are initially characterized by profilometry and UV-VIS absorption spectroscopy. Calibration of both laser power and cavity sensitivity is described in detail. A protocol for performing Flash-photolysis Time Resolved Microwave Conductivity (TRMC) experiments, a non-contact method of determining the conductivity of a material, is presented. A process for identifying the real and imaginary components of the complex conductivity by performing TRMC as a function of microwave frequency is given. Charge carrier dynamics are determined under different excitation regimes (including both power and wavelength). Techniques for distinguishing between direct and trap-mediated decay processes are presented and discussed. Results are modelled and interpreted with reference to a general kinetic model of photoinduced charge carriers in a semiconductor. The techniques described are applicable to a wide range of optoelectronic materials, including organic and inorganic photovoltaic materials, nanoparticles, and conducting/semiconducting thin films