6 research outputs found

    pH‐Responsive Charge‐Conversion Progelator Peptides

    No full text
    A simple strategy for generating stimuli-responsive peptide-based hydrogels via charge-conversion of a self-assembling peptide (SAP) is described. These materials are formulated as soluble, polyanionic peptides, containing maleic acid, citraconic acid, or dimethylmaleic acid masking groups on each lysine residue, which do not form assemblies, but instead flow easily through high gauge needles and catheters. Acid-induced mask hydrolysis renews the zwitterionic nature of the peptides with concomitant and rapid self-assembly via β-sheet formation into rehealable hydrogels. The use of different masks enables one to tune pH responsiveness and assembly kinetics. In anticipation of their potential for in vivo hydrogel delivery and use, progelators exhibit hemocompatibility in whole human blood, and their peptide components are shown to be noncytotoxic. Finally, demonstration of stimuli-induced self-assembly for dye sequestration suggests a simple, non-covalent strategy for small molecule encapsulation in a degradable scaffold. In summary, this simple, scalable masking strategy allows for preparation of responsive, dynamic self-assembling biomaterials. This work sets the stage for implementing biodegradable therapeutic hydrogels that assemble in response to physiological, disease-relevant states of acidosis

    Bioinspired chemoenzymatic route to artificial melanin for hair pigmentation

    No full text
    Recent reports suggest that next-generation hair dyes might take inspiration from the natural pigment melanin. In humans, melanin imparts color to hair and skin and acts as a natural sunscreen and radical scavenger, thereby protecting lipids and proteins from damage. The most commonly employed synthetic mimic of melanin is polydopamine, and its successful deposition on human hair was recently reported. Herein, we describe an enzymatic approach to synthetic melanin for dyeing human hair in a process that closely mimics part of natural melanogenesis. This chemoenzymatic method avoids the addition of a base and enables the implementation of several monomers beyond dopamine, including tyrosine, tyramine, and their derivatives. Critically, the enzyme provides a milder process for producing coated hair fibers than conventional chemical hair dyeing methods. In addition to providing natural coloration, these coatings have the potential to act as protective sunscreens that prevent photodamage of the inner hair fibers during exposure to sunlight. The protocols developed herein represent a mild and efficient route to nature-inspired multifunctional coatings. Such materials are promising candidates for artificial hair pigmentation and, more generally, could find extensive application as functional fiber coatings

    Biomimetic pheomelanin to unravel the electronic, molecular and supramolecular structure of the natural product

    No full text
    Herein, we investigate synthetic routes to a close mimic of natural pheomelanin. Three different oxidative polymerization routes were attempted to generate synthetic pheomelanin, each giving rise to structurally dissimilar materials. Among them, the route employing 5-cysteinyl-dihydroxyphenylalanine (5-CD) as a monomer was verified as a close analogue of extracted pheomelanin from humans and birds. The resulting biomimetic and natural pheomelanins were compared via various techniques, including solid-state Nuclear Magnetic Resonance (ssNMR) and Electron Paramagnetic Resonance (EPR). This synthetic pheomelanin closely mimics the structure of natural pheomelanin as determined by parallel characterization of pheomelanin extracted from multiple biological sources. With a good synthetic biomimetic material in hand, we describe cation-pi interactions as an important driving force for pheomelanogenesis, further advancing our fundamental understanding of this important biological pigment

    Selenomelanin : an abiotic selenium analogue of pheomelanin

    No full text
    Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin

    Unraveling the structure and function of melanin through synthesis

    No full text
    Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types.eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin.based on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials
    corecore