14 research outputs found

    Developing a method for quantifying hip joint angles and moments during walking using neural networks and wearables

    Get PDF
    Quantifying hip angles/moments during gait is critical for improving hip pathology diagnostic and treatment methods. Recent work has validated approaches combining wearables with artificial neural networks (ANNs) for cheaper, portable hip joint angle/moment computation. This study developed a Wearable-ANN approach for calculating hip joint angles/moments during walking in the sagittal/frontal planes with data from 17 healthy subjects, leveraging one shin-mounted inertial measurement unit (IMU) and a force-measuring insole for data capture. Compared to the benchmark approach, a two hidden layer ANN (n = 5 nodes per layer) achieved an average rRMSE = 15% and R2=0.85 across outputs, subjects and training rounds

    Hip Joint Angles and Moments during Stair Ascent Using Neural Networks and Wearable Sensors

    Get PDF
    End-stage hip joint osteoarthritis treatment, known as total hip arthroplasty (THA), improves satisfaction, life quality, and activities of daily living (ADL) function. Postoperatively, evaluating how patients move (i.e., their kinematics/kinetics) during ADL often requires visits to clinics or specialized biomechanics laboratories. Prior work in our lab and others have leveraged wearables and machine learning approaches such as artificial neural networks (ANNs) to quantify hip angles/moments during simple ADL such as walking. Although level-ground ambulation is necessary for patient satisfaction and post-THA function, other tasks such as stair ascent may be more critical for improvement. This study utilized wearable sensors/ANNs to quantify sagittal/frontal plane angles and moments of the hip joint during stair ascent from 17 healthy subjects. Shin/thigh-mounted inertial measurement units and force insole data were inputted to an ANN (2 hidden layers, 10 total nodes). These results were compared to gold-standard optical motion capture and force-measuring insoles. The wearable-ANN approach performed well, achieving rRMSE = 17.7% and R2 = 0.77 (sagittal angle/moment: rRMSE = 17.7 ± 1.2%/14.1 ± 0.80%, R2 = 0.80 ± 0.02/0.77 ± 0.02; frontal angle/moment: rRMSE = 26.4 ± 1.4%/12.7 ± 1.1%, R2 = 0.59 ± 0.02/0.93 ± 0.01). While we only evaluated healthy subjects herein, this approach is simple and human-centered and could provide portable technology for quantifying patient hip biomechanics in future investigations

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Dataset associated with "Enhancements in ammonia and methane from agricultural sources in the northeastern Colorado Front Range using observations from a small research aircraft"

    Get PDF
    Data collected in flight aboard the University of Wyoming King Air research aircraft. The data are from three 2-4 hour flights that occurred on November 9, November 13, and November 15 in 2019. The dataset includes timeseries of trace gases (specifically ammonia, methane, ethane, carbon monoxide, and carbon dioxide) and meteorological and position variables routinely recorded by the aircraft. The flights were conducted in the northeastern Colorado Front Range. A goal of the flights was to sample emissions from agricultural facilities in the area and separate them from other sources in the region, such oil and natural gas production.Quantifying ammonia (NH3) to methane (CH4) enhancement ratios from agricultural sources is important for understanding air pollution and nitrogen deposition. The northeastern Colorado Front Range is home to concentrated animal feeding operations (CAFOs) that produce large emissions of NH3 and CH4. Isolating enhancements of NH3 and CH4 in this region due to agriculture is complicated because CAFOs are often located within regions of oil and natural gas (O&NG) extraction that are a major source of CH4 and other alkanes. Here, we utilize a small research aircraft to collect in-situ 1-Hz measurements of gas-phase NH3, CH4, and ethane (C2H6) downwind of feedlots during three flights conducted in November 2019. Enhancements in NH3 and CH4 are distinguishable up to 10 km downwind of CAFOs with the most concentrated portions of the plumes typically below 0.25 km AGL. We demonstrate that NH3 and C2H6 can be jointly used to separate near-source enhancements in CH4 from agriculture and O&NG. Molar enhancement ratios of NH3 to CH4 are quantified for individual CAFOs in this region, and they range from 0.8 - 2.7 ppbv ppbv-1. A multivariate regression model can be used to attribute the relative contribution of O&NG versus agriculture during the brief study period.This research was funded by the National Science Foundation, award #202012

    Farmer's Cooperatives to Regionalize Food Systems: A Critique of Local Food Law Scholarship and Suggestion for Critical Reconsideration of Existing Legal Tools for Changing the US Food System

    No full text
    corecore