6,574 research outputs found

    Distinct regions of the Swi5 and Ace2 transcription factors are required for specific gene activation

    Get PDF
    Swi5 and Ace2 are cell cycle-regulated transcription factors that activate expression of early G1-specific genes in Saccharomyces cerevisiae. Swi5 and Ace2 have zinc finger DNA-binding domains that are highly conserved, and the two proteins bind to the same DNA sequences in vitro. Despite this similarity in DNA binding, Swi5 and Ace2 activate different genes in vivo, with Swi5 activating the HO gene and Ace2 activating CTS1 expression. In this report we have used chimeric fusions between Swi5 and Ace2 to determine what regions of these proteins are necessary for promoter-specific activation of HO and CTS1. We have identified specific regions of Swi5 and Ace2 that are required for activation of HO and CTS1, respectively. The Swi5 protein binds HO promoter DNA cooperatively with the Pho2 homeodomain protein, and the HO specificity region of Swi5 identified in the chimeric analysis coincides with the region of Swi5 previously identified that interacts with Pho2 in vitro. Swi5 and Ace2 also activate expression of a number of other genes expressed in G1 phase of the cell cycle, including ASH1, CDC6, EGT2, PCL2, PCL9, RME1, and SIC1. Analysis of the Swi5/Ace2 chimeras shows that distinct regions of Swi5 and Ace2 contribute to the transcriptional activation of some of these other G1-regulated genes

    Restoration of Lake Hakanoa: Results of model simulations

    Get PDF
    This report was requested by Waikato District Council. It covers the lake water quality of, and possible restoration scenarios for, Lake Hakanoa a riverine lake situated in Huntly. The lake is used as a recreational resource by the community. In the past it has been reported to have had very poor water quality and is known to be eutrophic. It is currently in an algal-dominated, devegetated state and has low water clarity. The shallowness of this lake makes it potentially susceptible to resuspension of sediments through wind action. A community group, Friends of Hakanoa, has been responsible for the formation of a path around the perimeter of the lake, retiring about 3.6% of the catchment from pastoral farming and creating a riparian margin. Results from more recent reports and this report indicate a trend of improving water quality which may be related to recent restoration actions such as re-establishment of a riparian margin

    Animal Welfare: A Contemporary Understanding Demands a Contemporary Approach to Behavior and Training

    Get PDF
    Contemporary understanding of One Welfare highlights the intrinsic link between animal and human welfare and ethics, regarding physical and psychological well-being as equally important. These principles apply to all animals we keep, regardless of why we keep them. One factor influencing psychological welfare is how animals are prepared for their life, including how they are taught (trained) to behave. Where such preparation is lacking or inappropriate methods are used, animals will be fearful and/or frustrated, resulting in impaired welfare, problematic behavior, and potential injury to humans and other animals. How animals are trained and by whom are the focus of this paper. Currently, animal trainers and behaviorists are unregulated. Thus anyone can claim to be a “professional” or “expert” with no required testing of knowledge or skill. This enables the continued use of outdated, less humane methods and increases confusion for those seeking competent help and for those looking for a career path. With increasing numbers of companion animals, there is commercial incentive to work in this sector and an urgent need for clarity and regulation if One Welfare is to be enhanced. This paper catalogues the UK experience of developing a regulatory framework for this sector. It argues the need for and benefits of regulation and maps the progress of the Animal Behaviour and Training Council since its inception in 2010 with the bringing together of various stakeholders including veterinary organizations, animal welfare charities, and associations representing practitioners. It describes the rationales leading to the development of agreed standards, academic provision to support those standards, and assessment procedures common to all. It considers future challenges within a turbulent political and economic environment, including securing government recognition for a single UK regulatory authority. Though this goal is yet to be realized, significant progress has been made and momentum is gathering

    Restoration and Reexamination of Apollo Lunar Dust Detector Data from Original Telemetry Files

    Get PDF
    We are recovering the original telemetry (Figure I) from the Apollo Dust, Thermal, Radiation Environment Monitor (DTREM) experiment, more commonly known as the Dust Detector, and producing full time resolution (54 second) data sets for release through the Planetary Data System (PDS). The primary objective of the experiment was to evaluate the effect of dust deposition, temperature, and radiation damage on solar cells on the lunar surface. The monitor was a small box consisting of three solar cells and thermistors mounted on the ALSEP (Apollo Lunar Surface Experiments Package) central station. The Dust Detector was carried on Apollo's 11, 12, 14 and 15. The Apollo 11 DTREM was powered by solar cells and only operated for a few months as planned. The Apollo 12, 14, and 15 detectors operated for 5 to 7 years, returning data every 54 seconds, consisting of voltage outputs from the three solar cells and temperatures measured by the three thermistors. The telemetry was received at ground stations and held on the Apollo Housekeeping (known as "Word 33") tapes. made available to the National Space Science Data Center (NSSDC) by Yosio Nakamura (University of Texas Institute for Geophysics). We have converted selected parts of the telemetry into uncalibrated and calibrated output voltages and temperatures

    Restoration and Reexamination of Data from the Apollo 11, 12, 14, and 15 Dust, Thermal and Radiation Engineering Measurements Experiments

    Get PDF
    As part of an effort by the Lunar Data Node (LDN) we are restoring data returned by the Apollo Dust, Thermal, and Radiation Engineering Measurements (DTREM) packages emplaced on the lunar surface by the crews of Apollo 11, 12, 14, and 15. Also commonly known as the Dust Detector experiments, the DTREM packages measured the outputs of exposed solar cells and thermistors over time. They operated on the surface for up to nearly 8 years, returning data every 54 seconds. The Apollo 11 DTREM was part of the Early Apollo Surface Experiments Package (EASEP), and operated for a few months as planned following emplacement in July 1969. The Apollo 12, 14, and 15 DTREMs were mounted on the central station as part of the Apollo Lunar Surface Experiments Package (ALSEP) and operated from deployment until ALSEP shutdown in September 1977. The objective of the DTREM experiments was to determine the effects of lunar and meteoric dust, thermal stresses, and radiation exposure on solar cells. The LDN, part of the Geosciences Node of the Planetary Data System (PDS), operates out of the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. The goal of the LDN is to extract lunar data stored on older media and/or in obsolete formats, restore the data into a usable digital format, and archive the data with PDS and NSSDC. For the DTREM data we plan to recover the raw telemetry, translate the raw counts into appropriate output units, and then apply calibrations. The final archived data will include the raw, translated, and calibrated data and the associated conversion tables produced from the microfilm, as well as ancillary supporting data (metadata) packaged in PDS format

    HLA gene expression is altered in whole blood and placenta from women who later developed preeclampsia

    Get PDF
    Preeclampsia is a multi-system disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify dysregulated genes in maternal whole blood samples which may be associated with the development of preeclampsia. Whole blood samples were obtained at 28 weeks of gestation from 5 women who later developed preeclampsia (cases) and 10 matched women with normotensive pregnancies (controls). Placenta samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. We studied gene expression profiles using Illumina microarray in blood and validated changes in gene expression in whole blood and placenta tissue by qPCR. We found a transcriptional profile differentiating cases from controls; 236 genes were significantly dysregulated in blood from women who developed preeclampsia. Functional annotation of microarray results indicated that most of the genes found to be dysregulated were involved in inflammatory pathways. Whilst general trends were preserved, only HLA-A was validated in whole blood samples from cases using qPCR (2.30 ± 0.9 fold change) whereas in placental tissue HLA-DRB1 expression was found to be significantly increased in samples from women with preeclampsia (5.88 ± 2.24 fold change). We have identified that HLA-A is up-regulated in the circulation of women who went on to develop preeclampsia. In placenta of women with preeclampsia we identified that HLA-DRB1 is up-regulated. Our data provide further evidence for involvement of the HLA gene family in the pathogenesis of preeclampsia

    Recent Decisions

    Get PDF
    Comments on recent decisions by Norman H. McNeil, David N. McBride, Robert J. Hepler, John P. Coyne, and Allan Schmid

    First-Time Analysis of Completely Restored DTREM Instrument Data from Apollo 14 and 15

    Get PDF
    The Dust, Thermal and Radiation Engineering Measurement (DTREM) packages (figure 1) mounted on the central stations of the Apollo 11, 12, 14, and 15 ALSEPs (Apollo Lunar Surface Experiments Packages) measured the outputs of exposed solar cells and thermistors over time. The goal of the experiment, also commonly known as the dust detector, was to study the long-term effects of dust, radiation, and temperature at the lunar surface on solar cells. The monitors returned data for up to almost 8 years from the lunar surface

    Update on Apollo Data Restoration by the NSSDC and the PDS Lunar Data Node

    Get PDF
    The Lunar Data Node (LDN) , under the auspices of the Geosciences Node of the Planetary Data System (PDS) and the National Space Science Data Center (NSSDC), is continuing its efforts to recover and restore Apollo science data. The data being restored are in large part archived with NSSDC on older media, but unarchived data are also being recovered from other sources. They are typically on 7- or 9-track magnetic tapes, often in obsolete formats, or held on microfilm, microfiche, or paper documents. The goal of the LDN is to restore these data from their current form, which is difficult for most researchers to access, into common digital formats with all necessary supporting data (metadata) and archive the data sets with PDS. Restoration involves reading the data from the original media, deciphering the data formats to produce readable digital data and converting the data into usable tabular formats. Each set of values in the table must then be understood in terms of the quantity measured and the units used. Information on instrument properties, operational history, and calibrations is gathered and added to the data set, along with pertinent references, contacts, and other ancillary documentation. The data set then undergoes a peer review and the final validated product is archived with PDS. Although much of this effort has concentrated on data archived at NSSDC in the 1970's, we have also recovered data and information that were never sent to NSSDC. These data, retrieved from various outside sources, include raw and reduced Gamma-Ray Spectrometer data from Apollos 15 and 16, information on the Apollo 17 Lunar Ejecta And Meteorites experiment, Dust Detector data from Apollos 11, 12, 14, and I5, raw telemetry tapes from the Apollo ALSEPs, and Weekly Status Reports for all the Apollo missions. These data are currently being read or organized, and supporting data is being gathered. We are still looking for the calibrated heat flow data from Apollos 15 and 17 for the period 1975-1977, any assistance or information on these data would be welcome. NSSDC has recently been tasked to release its hard-copy archive, comprising photography, microfilm, and microfiche. The details are still being discussed, but we are concentrating on recovering the valuable lunar data from these materials while they are still readily accessible. We have identified the most critical of these data and written a LASER proposal to fund their restoration. Included in this effort are data from the Apollo 15 and 16 Mass Spectrometers and the Apollo 17 Par-UV Spectrometer and ancillary information on the Apollo 17 Surface Electrical Properties Experiment
    corecore