20 research outputs found
Putative mixotrophic nitrifying-denitrifying Gammaproteobacteria implicated in nitrogen cycling within the ammonia/oxygen transition zone of an oil sands pit Lake
Syncrude Canada Ltd.Anthropogenically-impacted environments offer the opportunity to discover novel microbial species and metabolisms, which may be undetectable in natural systems. Here, a combined metagenomic and geochemical study in Base Mine Lake, Alberta, Canada, which is the only oil sands end pit lake to date, revealed that nitrification was performed by members from Nitrosomonadaceae, Chloroflexi and unclassified Gammaproteobacteria “MBAE14.” While Nitrosomonadaceae and Chloroflexi groups were relatively abundant in the upper oxygenated zones, MBAE14 dominated the hypoxic hypolimnetic zones (approximately 30% of total microbial communities); MBAE14 was not detected in the underlying anoxic tailings. Replication rate analyses indicate that MBAE14 grew in metalimnetic and hypolimnetic water cap regions, most actively at the metalimnetic, ammonia/oxygen transition zone consistent with it putatively conducting nitrification. Detailed genomic analyses of MBAE14 evidenced both ammonia oxidation and denitrification into dinitrogen capabilities. However, the absence of known CO2-fixation genes suggests a heterotrophic denitrifying metabolism. Functional marker genes of ammonia oxidation (amo and hao) in the MBAE14 genome are homologous with those conserved in autotrophic nitrifiers, but not with those of known heterotrophic nitrifiers. We propose that this novel MBAE14 inhabits the specific ammonia-rich, oxygen and labile organic matter-limited conditions occurring in Base Mine Lake which selectively favors mixotrophic coupled nitrifier denitrification metabolism. Our results highlight the opportunities to better constrain biogeochemical cycles from the application of metagenomics to engineered systems associated with extractive resource sectors
Oral abstracts 3: RA Treatment and outcomesO13. Validation of jadas in all subtypes of juvenile idiopathic arthritis in a clinical setting
Background: Juvenile Arthritis Disease Activity Score (JADAS) is a 4 variable composite disease activity (DA) score for JIA (including active 10, 27 or 71 joint count (AJC), physician global (PGA), parent/child global (PGE) and ESR). The validity of JADAS for all ILAR subtypes in the routine clinical setting is unknown. We investigated the construct validity of JADAS in the clinical setting in all subtypes of JIA through application to a prospective inception cohort of UK children presenting with new onset inflammatory arthritis. Methods: JADAS 10, 27 and 71 were determined for all children in the Childhood Arthritis Prospective Study (CAPS) with complete data available at baseline. Correlation of JADAS 10, 27 and 71 with single DA markers was determined for all subtypes. All correlations were calculated using Spearman's rank statistic. Results: 262/1238 visits had sufficient data for calculation of JADAS (1028 (83%) AJC, 744 (60%) PGA, 843 (68%) PGE and 459 (37%) ESR). Median age at disease onset was 6.0 years (IQR 2.6-10.4) and 64% were female. Correlation between JADAS 10, 27 and 71 approached 1 for all subtypes. Median JADAS 71 was 5.3 (IQR 2.2-10.1) with a significant difference between median JADAS scores between subtypes (p < 0.01). Correlation of JADAS 71 with each single marker of DA was moderate to high in the total cohort (see Table 1). Overall, correlation with AJC, PGA and PGE was moderate to high and correlation with ESR, limited JC, parental pain and CHAQ was low to moderate in the individual subtypes. Correlation coefficients in the extended oligoarticular, rheumatoid factor negative and enthesitis related subtypes were interpreted with caution in view of low numbers. Conclusions: This study adds to the body of evidence supporting the construct validity of JADAS. JADAS correlates with other measures of DA in all ILAR subtypes in the routine clinical setting. Given the high frequency of missing ESR data, it would be useful to assess the validity of JADAS without inclusion of the ESR. Disclosure statement: All authors have declared no conflicts of interest. Table 1Spearman's correlation between JADAS 71 and single markers DA by ILAR subtype ILAR Subtype Systemic onset JIA Persistent oligo JIA Extended oligo JIA Rheumatoid factor neg JIA Rheumatoid factor pos JIA Enthesitis related JIA Psoriatic JIA Undifferentiated JIA Unknown subtype Total cohort Number of children 23 111 12 57 7 9 19 7 17 262 AJC 0.54 0.67 0.53 0.75 0.53 0.34 0.59 0.81 0.37 0.59 PGA 0.63 0.69 0.25 0.73 0.14 0.05 0.50 0.83 0.56 0.64 PGE 0.51 0.68 0.83 0.61 0.41 0.69 0.71 0.9 0.48 0.61 ESR 0.28 0.31 0.35 0.4 0.6 0.85 0.43 0.7 0.5 0.53 Limited 71 JC 0.29 0.51 0.23 0.37 0.14 -0.12 0.4 0.81 0.45 0.41 Parental pain 0.23 0.62 0.03 0.57 0.41 0.69 0.7 0.79 0.42 0.53 Childhood health assessment questionnaire 0.25 0.57 -0.07 0.36 -0.47 0.84 0.37 0.8 0.66 0.4
Waste biomass from hypersaline potash mining byproducts: Detection and visualization of Cu(II) and Cr(VI) on Croceicoccus sp. FTI14 biosorbent
Microorganisms in hypersaline potash mining byproducts and their potential environmental applications have not been extensively reported. This study reports the diverse waste-impacted microbial communities (archaea and bacteria) adapted to extreme salinity (>10–25%). Of these, halotolerant Croceicoccus sp. FTI14 was investigated as a biosorbent for removing dissolved Cu(II) and Cr(VI) from synthetic Cu(II) and Cr(VI)-contaminated DI, groundwater and saline groundwater (0.55 M ionic strength). FTI14 biomass was oven-dried, finely ground, and investigated in batch biosorption experiments. At initial metal concentrations of 40 mg/L, FTI14 removed 40 ± 0.7% (16.3 ± 0.5 mg/g) and 19 ± 0.1% (7.8 ± 0.1 mg/g) of the Cu(II) from deionized water and saline groundwater, respectively, while only 22.9 ± 0.7% (9.6 ± 0.2 mg/g) and 2.1 ± 0.6% (1.0 ± 0.3 mg/g) Cr(VI) removal was achieved. Cu(II) uptake (mg/g) exceeded Cr(VI) uptake by a factor of 1.7–7.8. Langmuir and Freundlich models were applied on FTI14 biosorption isotherm data. The Freundlich model showed a better fit for both Cu(II) and Cr(VI), as indicated by the AIC values compared with evidence ratios. Synchrotron-based scanning transmission X-ray microscopy (STXM) visualizations of the biosorbent showed a mixture of whole cells and indistinct biomass and a spatial association between metals and biomass. Metal exposure alters the amide functional groups peak in Fourier transform Infra-red (FTIR) spectra, suggesting its role in sorption process. Thus, this study indicates culturable halotolerant microorganisms from hypersaline potash mining byproducts and its potential as biosorbent applications for metal removal from impacted groundwater
Neutrophilic Iron-Oxidizing “Zetaproteobacteria” and Mild Steel Corrosion in Nearshore Marine Environments ▿ †
Microbiologically influenced corrosion (MIC) of mild steel in seawater is an expensive and enduring problem. Little attention has been paid to the role of neutrophilic, lithotrophic, iron-oxidizing bacteria (FeOB) in MIC. The goal of this study was to determine if marine FeOB related to Mariprofundus are involved in this process. To examine this, field incubations and laboratory microcosm experiments were conducted. Mild steel samples incubated in nearshore environments were colonized by marine FeOB, as evidenced by the presence of helical iron-encrusted stalks diagnostic of the FeOB Mariprofundus ferrooxydans, a member of the candidate class “Zetaproteobacteria.” Furthermore, Mariprofundus-like cells were enriched from MIC biofilms. The presence of Zetaproteobacteria was confirmed using a Zetaproteobacteria-specific small-subunit (SSU) rRNA gene primer set to amplify sequences related to M. ferrooxydans from both enrichments and in situ samples of MIC biofilms. Temporal in situ incubation studies showed a qualitative increase in stalk distribution on mild steel, suggesting progressive colonization by stalk-forming FeOB. We also isolated a novel FeOB, designated Mariprofundus sp. strain GSB2, from an iron oxide mat in a salt marsh. Strain GSB2 enhanced uniform corrosion from mild steel in laboratory microcosm experiments conducted over 4 days. Iron concentrations (including precipitates) in the medium were used as a measure of corrosion. The corrosion in biotic samples (7.4 ± 0.1 mM) was significantly higher than that in abiotic controls (5.0 ± 0.1 mM). These results have important implications for the role of FeOB in corrosion of steel in nearshore and estuarine environments. In addition, this work shows that the global distribution of Zetaproteobacteria is far greater than previously thought
Iron-bound organic carbon in forest soils: quantification and characterization
Iron oxide minerals play an important role in stabilizing organic carbon (OC) and regulating the biogeochemical cycles of OC on the earth surface. To predict the fate of OC, it is essential to understand the amount, spatial variability, and characteristics of Fe-bound OC in natural soils. In this study, we investigated the concentrations and characteristics of Fe-bound OC in soils collected from 14 forests in the United States and determined the impact of ecogeographical variables and soil physicochemical properties on the association of OC and Fe minerals. On average, Fe-bound OC contributed 37.8% of total OC (TOC) in forest soils. Atomic ratios of OC: Fe ranged from 0.56 to 17.7, with values of 1-10 for most samples, and the ratios indicate the importance of both sorptive and incorporative interactions. The fraction of Fe-bound OC in TOC (f(Fe-OC)) was not related to the concentration of reactive Fe, which suggests that the importance of association with Fe in OC accumulation was not governed by the concentration of reactive Fe. Concentrations of Fe-bound OC and f(Fe-OC) increased with latitude and reached peak values at a site with a mean annual temperature of 6.6 degrees C. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and near-edge X-ray absorption fine structure (NEXAFS) analyses revealed that Fe-bound OC was less aliphatic than non-Fe-bound OC. Fe-bound OC also was more enriched in C-13 compared to the non-Fe-bound OC, but C/N ratios did not differ substantially. In summary, C-13-enriched OC with less aliphatic carbon and more carboxylic carbon was associated with Fe minerals in the soils, with values of f(Fe-OC) being controlled by both sorptive and incorporative associations between Fe and OC. Overall, this study demonstrates that Fe oxides play an important role in regulating the biogeochemical cycles of C in forest soils and uncovers the governing factors for the spatial variability and characteristics of Fe-bound OC
Geochemical Controls on Uranium Release from Neutral-pH Rock Drainage Produced by Weathering of Granite, Gneiss, and Schist
We investigated geochemical processes controlling uranium release in neutral-pH (pH ≥ 6)
rock drainage (NRD) at a prospective gold deposit hosted in granite, schist, and gneiss. Although
uranium is not an economic target at this deposit, it is present in the host rock at a median
abundance of 3.7 µg/g, i.e., above the average uranium content of the Earth’s crust. Field bin and
column waste-rock weathering experiments using gneiss and schist mine waste rock produced
circumneutral-pH (7.6 to 8.4) and high-alkalinity (41 to 499 mg/L as CaCO₃) drainage, while granite
produced drainage with lower pH (pH 4.7 to >8) and lower alkalinity (<10 to 210 mg/L as CaCO₃).
In all instances, U release was associated with calcium release and formation of weakly sorbing
calcium-carbonato-uranyl aqueous complexes. This process accounted for the higher release of
uranium from carbonate-bearing gneiss and schist than from granite despite the latter’s higher
solid-phase uranium content. In addition, unweathered carbonate-bearing rocks having a higher
sulfide-mineral content released more uranium than their oxidized counterparts because sulfuric
acid produced during sulfide-mineral oxidation promoted dissolution of carbonate minerals, release
of calcium, and formation of calcium-carbonato-uranyl aqueous complexes. Substantial uranium
attenuation occurred during a sequencing experiment involving application of uranium-rich gneiss
drainage into columns containing Fe-oxide rich schist. Geochemical modeling indicated that uranium
attenuation in the sequencing experiment could be explained through surface complexation and that
this process is highly sensitive to dissolved calcium concentrations and pCO₂ under NRD conditions.Science, Faculty ofNon UBCEarth, Ocean and Atmospheric Sciences, Department ofReviewedFacult