12 research outputs found

    Gene Ontology annotations: what they mean and where they come from

    Get PDF
    To address the challenges of information integration and retrieval, the computational genomics community increasingly has come to rely on the methodology of creating annotations of scientific literature using terms from controlled structured vocabularies such as the Gene Ontology (GO). Here we address the question of what such annotations signify and of how they are created by working biologists. Our goal is to promote a better understanding of how the results of experiments are captured in annotations, in the hope that this will lead both to better representations of biological reality through annotation and ontology development and to more informed use of GO resources by experimental scientists

    Harmonizing model organism data in the Alliance of Genome Resources.

    Get PDF
    The Alliance of Genome Resources (the Alliance) is a combined effort of 7 knowledgebase projects: Saccharomyces Genome Database, WormBase, FlyBase, Mouse Genome Database, the Zebrafish Information Network, Rat Genome Database, and the Gene Ontology Resource. The Alliance seeks to provide several benefits: better service to the various communities served by these projects; a harmonized view of data for all biomedical researchers, bioinformaticians, clinicians, and students; and a more sustainable infrastructure. The Alliance has harmonized cross-organism data to provide useful comparative views of gene function, gene expression, and human disease relevance. The basis of the comparative views is shared calls of orthology relationships and the use of common ontologies. The key types of data are alleles and variants, gene function based on gene ontology annotations, phenotypes, association to human disease, gene expression, protein-protein and genetic interactions, and participation in pathways. The information is presented on uniform gene pages that allow facile summarization of information about each gene in each of the 7 organisms covered (budding yeast, roundworm Caenorhabditis elegans, fruit fly, house mouse, zebrafish, brown rat, and human). The harmonized knowledge is freely available on the alliancegenome.org portal, as downloadable files, and by APIs. We expect other existing and emerging knowledge bases to join in the effort to provide the union of useful data and features that each knowledge base currently provides

    Annotations are provided to the Gene Ontology Consortium as tab-delimited files with 15 fields

    No full text
    Four fields indicate the gene product being annotated, the ontology terms used in the association, the type of evidence supporting the annotation and the reference where the original evidence was presented. The three annotations described in this manuscript are shown.<p><b>Copyright information:</b></p><p>Taken from "Gene Ontology annotations: what they mean and where they come from"</p><p>http://www.biomedcentral.com/1471-2105/9/S5/S2</p><p>BMC Bioinformatics 2008;9(Suppl 5):S2-S2.</p><p>Published online 29 Apr 2008</p><p>PMCID:PMC2367625.</p><p></p

    miRNA Nomenclature: A View Incorporating Genetic Origins, Biosynthetic Pathways, and Sequence Variants.

    No full text
    High-throughput sequencing of miRNAs has revealed the diversity and variability of mature and functional short noncoding RNAs, including their genomic origins, biogenesis pathways, sequence variability, and newly identified products such as miRNA-offset RNAs (moRs). Here we review known cases of alternative mature miRNA-like RNA fragments and propose a revised definition of miRNAs to encompass this diversity. We then review nomenclature guidelines for miRNAs and propose to extend nomenclature conventions to align with those for protein-coding genes established by international consortia. Finally, we suggest a system to encompass the full complexity of sequence variations (i.e., isomiRs) in the analysis of small RNA sequencing experiments. Trends Genet 2015 Nov; 31(11):613-26

    Orthology for comparative genomics in the mouse genome database.

    No full text
    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. Mamm Genome 2015 Aug; 26(7-8):305-31

    Nomenclature of Toso, Fas Apoptosis Inhibitory Molecule 3, and IgM FcR.

    No full text
    Hiromi Kubagawa and John E. Coligan coordinated an online meeting to define an appropriate nomenclature for the cell surface glycoprotein presently designated by different names: Toso, Fas apoptosis inhibitory molecule 3 (FAIM3), and IgM FcR (FcμR). FAIM3 and Faim3 are the currently approved symbols for the human and mouse genes, respectively, in the National Center for Biotechnology Information, Ensembl, and other databases. However, recent functional results reported by several groups of investigators strongly support a recommendation for renaming FAIM3/Faim3 as FCMR/Fcmr, a name better reflecting its physiological function as the FcR for IgM. Participants included 12 investigators involved in studying Toso/FAIM3(Faim3)/FμR, representatives from the Human Genome Nomenclature Committee (Ruth Seal) and the Mouse Genome Nomenclature Committee (Monica McAndrews), and an observer from the IgM research field (Michael Carroll). In this article, we provide a brief background of the key research on the Toso/FAIM3(Faim3)/FcμR proteins, focusing on the ligand specificity and functional activity, followed by a brief summary of discussion about adopting a single name for this molecule and its gene and a resulting recommendation for genome nomenclature committees. J Immunol 2015 May 1; 194(9):4055-7
    corecore