16 research outputs found

    Distinct patterns of grey matter abnormality in high-functioning autism and Asperger's syndrome

    Get PDF
    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance imaging (MRI) studies of autism are in disagreement. One possible reason is that the diagnosis of autism takes precedence over Asperger's syndrome and a distinction in language acquisition is rarely made. We therefore planned to examine a whole brain hypothesis that the patterns of grey matter differences in Asperger's syndrome and HFA can be distinguished. Methods: We used voxel-based computational morphometry to map grey matter volume differences in 33 children with either Asperger's syndrome or high-functioning autism compared to 55 typical developing control children balanced for age, IQ, gender, maternal language and ethnicity. Results: Children with HFA had significantly smaller grey matter volumes in subcortical, posterior cingulate and precuneus regions than the Asperger's group. Compared to controls, children with HFA had smaller grey matter volumes in predominantly fronto-pallidal regions, while children with Asperger's had less grey matter in mainly bilateral caudate and left thalamus. In addition we found a significant negative correlation between the size of a grey matter cluster around BA44 language area and the age of acquisition of phrase speech in the children with HFA. When the groups were combined we confirmed a mixed picture of smaller grey matter volumes in frontal, basal ganglia, temporal and parietal regions. Conclusions: Our study suggests that the underlying neurobiology in HFA and Asperger's syndrome is at least partly discrete. Future studies should therefore consider the history of language acquisition as a valuable tool to refine investigation of aetiological factors and management options in pervasive developmental disorders

    Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies

    No full text
    Background: The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay - essentially, the "absence of language delay." To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders. Methods: We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism. Results: The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus compared with controls; grey matter volumes were greater in more limited regions, including the bilateral inferior parietal lobule and the left fusiform gyrus. Both Asperger syndrome and autism studies reported volume increase in clusters in the ventral temporal lobe of the left hemisphere. Limitations: We assigned studies to autism and Asperger syndrome groups for separate analyses of the data and did not carry out a direct statistical group comparison. In addition, studies available for analysis did not capture the entire spectrum, therefore we cannot be certain that our findings apply to a wider population than that sampled. Conclusion: Whereas grey matter differences in people with Asperger syndrome compared with controls are sparser than those reported in studies of people with autism, the distribution and direction of differences in each category are distinctive. © 2011 Canadian Medical Association.link_to_OA_fulltex

    Quantitative susceptibility mapping as an indicator of subcortical and limbic iron abnormality in Parkinson's disease with dementia

    Get PDF
    Late stage Parkinson's disease (PD) patients were commonly observed with other non-motor comorbidities such as dementia and psychosis. While abnormal iron level in the substantia nigra was clinically accepted as a biomarker of PD, it was also suggested that the increased iron deposition could impair other brain regions and induce non-motor symptoms. A new Magnetic Resonance Imaging (MRI) called Quantitative Susceptibility Mapping (QSM) has been found to measure iron concentration in the grey matter reliably. In this study, we investigated iron level of different subcortical and limbic structures of Parkinson's disease (PD) patients with and without dementia by QSM.QSM and volumetric analysis by MRI were performed in 10 PD dementia (PDD) patients (73 ± 6 years), 31 PD patients (63 ± 8 years) and 27 healthy controls (62 ± 7 years). No significant differences were observed in the L-Dopa equivalent dosage for the two PD groups (p = 0.125).Putative iron content was evaluated in different subcortical and limbic structures of the three groups, as well as its relationship with cognitive performance. One-way ANCOVA with FDR adjustment at level of 0.05, adjusted for age and gender, showed significant group differences for left and right hippocampus (p = 0.015 & 0.032, respectively, BH-corrected for multiple ROIs) and right thalamus (p = 0.032, BH-corrected). Post-hoc test with Bonferroni's correction suggested higher magnetic susceptibility in PDD patients than healthy controls in the left and right hippocampus (p = 0.001 & 0.047, respectively, Bonferroni's corrected), while PD patients had higher magnetic susceptibility than the healthy controls in right hippocampus and right thalamus (p = 0.006 & 0.005, respectively, Bonferroni's corrected). PDD patients also had higher susceptibility than the non-demented PD patients in left hippocampus (p = 0.046, Bonferroni's corrected). The magnetic susceptibilities of the left and right hippocampus were negatively correlated with the Mini-Mental State Examination score (r = −0.329 & -0.386, respectively; p < 0.05).This study provides support for iron accumulation in limbic structures of PDD and PD patients and its correlation with cognitive performance, however, its putative involvement in development of non-motor cognitive dysfunction in PD pathogenesis remains to be elucidated. Keywords: Dementia, Parkinson's disease, Magnetic resonance imaging, Quantitative susceptibility mapping, Iron deposition, Hippocampus, Amygdal

    Autism spectrum disorder: Consensus guidelines on assessment, treatment and research from the British Association for Psychopharmacology:Consensus guidelines on assessment, treatment and research from the British Association for Psychopharmacology

    Get PDF
    An expert review of the aetiology, assessment, and treatment of autism spectrum disorder, and recommendations for diagnosis, management and service provision was coordinated by the British Association for Psychopharmacology, and evidence graded. The aetiology of autism spectrum disorder involves genetic and environmental contributions, and implicates a number of brain systems, in particular the gamma-aminobutyric acid, serotonergic and glutamatergic systems. The presentation of autism spectrum disorder varies widely and co-occurring health problems (in particular epilepsy, sleep disorders, anxiety, depression, attention deficit/hyperactivity disorder and irritability) are common. We did not recommend the routine use of any pharmacological treatment for the core symptoms of autism spectrum disorder. In children, melatonin may be useful to treat sleep problems, dopamine blockers for irritability, and methylphenidate, atomoxetine and guanfacine for attention deficit/hyperactivity disorder. The evidence for use of medication in adults is limited and recommendations are largely based on extrapolations from studies in children and patients without autism spectrum disorder. We discuss the conditions for considering and evaluating a trial of medication treatment, when non-pharmacological interventions should be considered, and make recommendations on service delivery. Finally, we identify key gaps and limitations in the current evidence base and make recommendations for future research and the design of clinical trials

    Modulation of striatal functional connectivity differences in adults with and without autism spectrum disorder in a single-dose randomized trial of cannabidivarin

    Get PDF
    Abstract Background Autism spectrum disorder (ASD) has a high cost to affected individuals and society, but treatments for core symptoms are lacking. To expand intervention options, it is crucial to gain a better understanding of potential treatment targets, and their engagement, in the brain. For instance, the striatum (caudate, putamen, and nucleus accumbens) plays a central role during development and its (atypical) functional connectivity (FC) may contribute to multiple ASD symptoms. We have previously shown, in the adult autistic and neurotypical brain, the non-intoxicating cannabinoid cannabidivarin (CBDV) alters the balance of striatal ‘excitatory–inhibitory’ metabolites, which help regulate FC, but the effects of CBDV on (atypical) striatal FC are unknown. Methods To examine this in a small pilot study, we acquired resting state functional magnetic resonance imaging data from 28 men (15 neurotypicals, 13 ASD) on two occasions in a repeated-measures, double-blind, placebo-controlled study. We then used a seed-based approach to (1) compare striatal FC between groups and (2) examine the effect of pharmacological probing (600 mg CBDV/matched placebo) on atypical striatal FC in ASD. Visits were separated by at least 13 days to allow for drug washout. Results Compared to the neurotypicals, ASD individuals had lower FC between the ventral striatum and frontal and pericentral regions (which have been associated with emotion, motor, and vision processing). Further, they had higher intra-striatal FC and higher putamenal FC with temporal regions involved in speech and language. In ASD, CBDV reduced hyperconnectivity to the neurotypical level. Limitations Our findings should be considered in light of several methodological aspects, in particular our participant group (restricted to male adults), which limits the generalizability of our findings to the wider and heterogeneous ASD population. Conclusion In conclusion, here we show atypical striatal FC with regions commonly associated with ASD symptoms. We further provide preliminary proof of concept that, in the adult autistic brain, acute CBDV administration can modulate atypical striatal circuitry towards neurotypical function. Future studies are required to determine whether modulation of striatal FC is associated with a change in ASD symptoms. Trial registration clinicaltrials.gov, Identifier: NCT03537950. Registered May 25th, 2018—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03537950?term=NCT03537950&draw=2&rank=1

    Effects of cannabidiol on brain excitation and inhibition systems; a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with and without autism spectrum disorder

    No full text
    The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders
    corecore