3,814 research outputs found
Parallel algorithms for interactive manipulation of digital terrain models
Interactive three-dimensional graphics applications, such as terrain data representation and manipulation, require extensive arithmetic processing. Massively parallel machines are attractive for this application since they offer high computational rates, and grid connected architectures provide a natural mapping for grid based terrain models. Presented here are algorithms for data movement on the massive parallel processor (MPP) in support of pan and zoom functions over large data grids. It is an extension of earlier work that demonstrated real-time performance of graphics functions on grids that were equal in size to the physical dimensions of the MPP. When the dimensions of a data grid exceed the processing array size, data is packed in the array memory. Windows of the total data grid are interactively selected for processing. Movement of packed data is needed to distribute items across the array for efficient parallel processing. Execution time for data movement was found to exceed that for arithmetic aspects of graphics functions. Performance figures are given for routines written in MPP Pascal
Observing the Structure of the Landscape with the CMB Experiments
Assuming that inflation happened through a series of tunneling in the string
theory landscape, it is argued that one can determine the structure of vacua
using precise measurements of the scalar spectral index and tensor
perturbations at large scales. It is shown that for a vacuum structure where
the energy gap between the minima is constant, i.e. , one
obtains the scalar spectral index, , to be , for the modes
that exit the horizon 60 e-folds before the end of inflation. Alternatively,
for a vacuum structure in which the energy gap increases linearly with the
vacuum index, i.e. , turns out to be
. Both these two models are motivated within the string theory
landscape using flux-compactification and their predictions for scalar spectral
index are compatible with WMAP results. For both these two models, the results
for the scalar spectral index turn out to be independent of . Nonetheless,
assuming that inflation started at Planckian energies and that there had been
successful thermalization at each step, one can constrain and in these two models,
respectively. Violation of the single-field consistency relation between the
tensor and scalar spectra is another prediction of chain inflation models. This
corresponds to having a smaller tensor/scalar ratio at large scales in
comparison with the slow-roll counterparts. Similar to slow-roll inflation, it
is argued that one can reconstruct the vacuum structure using the CMB
experiments.Comment: v1: 8 pages, 2 figures; v2: grammatical typos corrected, results
unchanged v3: To be published in JCA
Desensitizing Inflation from the Planck Scale
A new mechanism to control Planck-scale corrections to the inflationary eta
parameter is proposed. A common approach to the eta problem is to impose a
shift symmetry on the inflaton field. However, this symmetry has to remain
unbroken by Planck-scale effects, which is a rather strong requirement on
possible ultraviolet completions of the theory. In this paper, we show that the
breaking of the shift symmetry by Planck-scale corrections can be
systematically suppressed if the inflaton field interacts with a conformal
sector. The inflaton then receives an anomalous dimension in the conformal
field theory, which leads to sequestering of all dangerous high-energy
corrections. We analyze a number of models where the mechanism can be seen in
action. In our most detailed example we compute the exact anomalous dimensions
via a-maximization and show that the eta problem can be solved using only
weakly-coupled physics.Comment: 34 pages, 3 figures
An experimental evaluation of software redundancy as a strategy for improving reliability
The strategy of using multiple versions of independently developed software as a means to tolerate residual software design faults is suggested by the success of hardware redundancy for tolerating hardware failures. Although, as generally accepted, the independence of hardware failures resulting from physical wearout can lead to substantial increases in reliability for redundant hardware structures, a similar conclusion is not immediate for software. The degree to which design faults are manifested as independent failures determines the effectiveness of redundancy as a method for improving software reliability. Interest in multi-version software centers on whether it provides an adequate measure of increased reliability to warrant its use in critical applications. The effectiveness of multi-version software is studied by comparing estimates of the failure probabilities of these systems with the failure probabilities of single versions. The estimates are obtained under a model of dependent failures and compared with estimates obtained when failures are assumed to be independent. The experimental results are based on twenty versions of an aerospace application developed and certified by sixty programmers from four universities. Descriptions of the application, development and certification processes, and operational evaluation are given together with an analysis of the twenty versions
GPR30 is necessary for estradiol-induced desensitization of 5- HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus
Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT1A) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT1A receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT1A receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT1A receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT1A receptor as measured by hormonal responses to the selective 5-HT1A receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT1A receptor signaling components including 5-HT1A receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT1A receptor protein but increased 5-HT1A mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT1A receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT1A receptor signaling pathway and desensitization of 5-HT1A receptor signaling
A Phase Transition between Small and Large Field Models of Inflation
We show that models of inflection point inflation exhibit a phase transition
from a region in parameter space where they are of large field type to a region
where they are of small field type. The phase transition is between a universal
behavior, with respect to the initial condition, at the large field region and
non-universal behavior at the small field region. The order parameter is the
number of e-foldings. We find integer critical exponents at the transition
between the two phases.Comment: 21 pages, 8 figure
- …