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Abstract
Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment
improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-
HT1A) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI
therapeutic efficacy. Estradiol modifies 5-HT1A receptor signaling and induces a partial
desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the
mechanisms underlying this effect are currently unknown. The purpose of this study was to
identify the estrogen receptor necessary for estradiol-induced 5-HT1A receptor desensitization. We
previously showed that estrogen receptor β is not necessary for 5-HT1A receptor desensitization
and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat
PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30
expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-
HT1A receptor as measured by hormonal responses to the selective 5-HT1A receptor agonist, (+)8-
OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated
protein and mRNA levels of 5-HT1A receptor signaling components including 5-HT1A receptor,
Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of
RGSz1, and decreased 5-HT1A receptor protein but increased 5-HT1A mRNA; GPR30 knockdown
prevented the estradiol-induced changes in 5-HT1A receptor protein in the PVN. Taken together,
these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT1A
receptor signaling pathway and desensitization of 5-HT1A receptor signaling.
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Introduction
Women in peri- to post-menopausal states experience a fluctuation, then decline, in estrogen
levels (Banger, 2002). The greatest reduction of estrogen levels is observed during the late
menopausal transition and the first year post-menopause (Archer et al., 1999; Santoro et al.,
1996; Schmidt et al., 2004). Decreased levels of estrogens are associated with various
neuropsychiatric disorders such as depression, anxiety, and panic disorders in women
(Arpels, 1996). During peri-menopause, there is a higher incidence of first onset of mood
disturbances (Freeman et al., 2004; Harlow et al., 2003). Change in serotonergic function,
particularly serotonin 1A (5-HT1A) receptor function (Lemonde et al., 2003; Savitz et al.,
2009; Shively and Bethea, 2004), is a hallmark of such disorders (Halbreich, 1990; Jimerson
et al., 1997; Joffe and Cohen, 1998; Ressler and Nemeroff, 2000).

Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat mood disorders.
Desensitization (attenuation) of both somatodendritic 5-HT1A autoreceptor signaling in the
midbrain dorsal raphe nucleus (DRN) and postsynaptic 5-HT1A receptor signaling in the
paraventricular nucleus (PVN) region of the hypothalamus are thought to contribute to the
therapeutic efficacy of SSRIs (Lesch et al 1991, Sargent et al 1997, Bosker et al., 2001;
Chaput et al., 1986; Czachura and Rasmussen, 2000; Lerer et al., 1999; Li et al., 1997;
Gunther et al., 2008; Raap et al., 1999; Bleir and de Montigny, 1994), which can take three
to 12 weeks to achieve (Rush et al., 2004). Multiple studies have provided direct evidence of
a hyperactive hypothalamic-adreno-pituitary (HPA) axis response to the 5-HT1A partial
agonist buspirone, as evidenced by elevated adrenocorticotropic hormone (ACTH) and
cortisol levels, which can be prevented by SSRI treatment (Navines et al., 2007; Gomez-Gil
et al., 2010; Nikisch et al., 2005). Desensitization of 5-HT1A receptor signaling in the PVN
can be measured by neuroendocrine challenge tests that detect changes in oxytocin (OT) and
ACTH levels in response to 5-HT1A receptor agonists (Li et al., 1997; Osei-Owusu et al.,
2005). In humans, chronic treatment with SSRIs reduces the release of OT and ACTH in
response to 5-HT1A receptor stimulation, thus demonstrating desensitization of the receptor
signaling (Lerer et al., 1999). These studies suggest that functional adaptative changes in
postsynaptic 5-HT1A receptor signaling underlie the effects of SSRIs.

Estrogens have been shown to enhance the efficacy of SSRIs for the treatment of mood
disorders and hot flushes in women (Lomax and Schonbaum, 1993; Schneider et al., 1997).
In rats, SSRIs produce full desensitization of 5-HT1A receptor signaling in the PVN in seven
to 14 days (Li et al., 1996; Raap et al., 1999), while estradiol alone can produce a partial
desensitization with two days of treatment (Raap et al., 2000). Therefore, it is hypothesized
that estrogen treatment in combination with SSRIs may accelerate SSRI therapeutic effects.

In order to improve current therapies for mood disorders, it is important to understand which
estrogen receptor is involved in the regulation of 5-HT1A receptors in the PVN. Of the two
classical nuclear estrogen receptors (ERs) α and β, density of ERβ is higher than ERα in the
PVN, especially in OT neurons (Alves et al., 1998; Hrabovszky et al., 2004; Laflamme et
al., 1998; Simonian and Herbison, 1997). Recent work in our laboratory has shown that ERβ
is not involved in 5-HT1A receptor desensitization (Rossi et al., 2010). This result, together
with the low expression of ERα in the PVN, led us to investigate the non-classical,
membrane estrogen receptor GPR30. GPR30 binds estrogen with high affinity (Revankar et
al., 2005; Thomas et al., 2005), is expressed in the PVN, and colocalizes with 5-HT1A
receptors, OT, and corticotrophin releasing factor (CRF) in the PVN (Brailoiu et al., 2007;
Sakamoto et al., 2007; Xu et al., 2009). Previous work in our laboratory showed that
treatment with the GPR30-selective agonist G-1 decreased 5-HT1A receptor signaling,
similar to estradiol (Xu et al., 2009). These data suggest a role for GPR30 in the estradiol-
mediated desensitization of 5-HT1A receptor signaling in the PVN.
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The 5-HT1A receptor is known to couple to the pertussis-toxin-insensitive G protein subunit
Gαz (Barr et al., 1997; Raymond et al., 1993). Stimulation of 5-HT1A receptors in the
hypothalamus stimulates release of OT and ACTH via coupling to Gαz (Serres et al., 2000).
Regulator of G protein signaling z1 (RGSz1), one of six splice variants of RGS20, is a
highly selective GTP-activating protein (GAP) for Gαz. RGSz1 is exclusively found in the
brain, where it accelerates hydrolysis of Gαz-bound GTP over 400-fold, with a Km of 2nM
(Glick et al., 1998; Wang et al., 1998; Wang et al., 2002). Two day treatment with estradiol
produces a dose-dependent upregulation of RGSz1 in the PVN, without changing Gαz
levels, that parallels the decreased hormone response induced by estradiol (Carrasco et al.,
2004), suggesting that RGSz1 is important in estradiol-induced desensitization of 5-HT1A
signaling.

In this study, we investigated the hypothesis that GPR30 expression in the PVN is necessary
for the estradiol-induced desensitization of 5-HT1A receptor signaling. To test this
hypothesis, we injected a recombinant adenovirus containing a small interference RNA
(siRNA) against GPR30 into the rat PVN and then evaluated the effects of estradiol on 5-
HT1A receptor signaling, as well as changes in mRNA and proteins involved in 5-HT1A
receptor signaling, including the 5-HT1A receptor, Gαz, and RGSz1.

Methods
Animals

Female Sprague-Dawley (SD) rats (225–250g) from Harlan (Haslett, MI) were housed two
per cage in a temperature-, humidity-, and light-controlled room (12h light/dark cycle). Food
and water were available ad libitum. All procedures were conducted in accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory Animals and as
approved by the University of Kansas Institutional Animal Care and Use Committee. All
efforts were made to minimize animal discomfort and to reduce the number of animals used.

Drugs
17β-Estradiol-3-benzoate (EB) was purchased from Sigma-Aldrich (St. Louis, MO). EB was
first dissolved in 100% ethanol to a concentration of 1mg/ml and then diluted with sesame
oil to a concentration of 25 μg/ml. The EB solution and sesame oil were administered at 0.4
ml/kg (EB dose 10 μg/kg, subcutaneous (s.c.)). (+)8-Hydroxy-2-dipropylaminotetralin
((+)8-OH-DPAT) was purchased from Tocris (Ellisville, MO). (+)8-OH-DPAT was
dissolved in 0.85% NaCl (saline) at a concentration of 0.2mg/ml and administered at a dose
of 0.2mg/kg, s.c. Solutions were made fresh before injection.

Procedures
Experiment 1: effect of estradiol on 5-HT1A receptor function—Prior to surgery,
rats were anesthetized by an intraperitoneal (i.p.) injection of a cocktail of ketamine
hydrochloride (100mg/kg) plus xylazine hydrochloride (7mg/kg). Rats were ovariectomized
(OVX) by removing both ovaries via a single ventral midline incision. Five days after OVX,
rats were given s.c. injections of either EB (10 μg/kg, 0.25ml/kg, s.c.) or vehicle (sesame
oil) once a day for two days. In all experiments, plasma estradiol levels were reduced to
below 10pg/ml by the seventh day after OVX, and two-day treatment with 10 μg/kg EB
raised plasma estradiol levels to 100–140pg/ml. 18h following the last injection of EB or
vehicle, rats were injected with the selective 5-HT1A receptor agonist, (+)8-OH-DPAT
(0.2mg/kg, s.c.) or vehicle (saline). 15 minutes later, animals were sacrificed by
decapitation. Trunk blood was collected in centrifuge tubes containing 0.5ml 0.3M EDTA
(pH 7.4). Brains were removed and snap-frozen in dry-ice-cooled isopentane and then
placed in dry ice. Plasma and brains were stored at −80°C until use.
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Experiment 2: effect of recombinant adenovirus containing GPR30 siRNA on
EB-induced desensitization of 5-HT1A receptors
Generation and evaluation of recombinant adenoviruses: Recombinant adenoviruses
were generated as described previously (Luo et al., 2007; Rossi et al., 2010). Briefly,
potential GPR30 siRNA sequences were designed using Block It™RNAi Designer program
provided by Invitrogen. Four potential siRNA and wo mismatch sequences were converted
to DNA sequences to further test and generate recombinant adenovirus. The sense sequences
of the GPR30 siRNAs were GPR30-737 (sense: AGCCTGTGCTATTCCCTCATTTTT,
antisense: AATGAGGGAATAGCACAGGCTTTT); GPR30-1135 (sense:
AACGGAGCAGTCAGATGTCAAGTTCATTTT, antisense:
ATGAACTTGACATCTGACTGCTCCGTTTTT); GPR30-402 (sense:
AGGACGAGCAGTATTACGATTTTT, antisense:
AATCGTAATACTGCTCGTCCTTTT); and GPR30-272 (sense:
AGCAACATCCTCATCTTGGTGGTGAATTTT, antisense:
ATTCACCACCAAGATGAGGATGTTGCTTTT). The mismatch sequences were
GPR30-1135mis (sense: AACGGACGGACTTGTAGAACTAGTCATTTT, antisense:
ATGACTAGTTCTACAAGTCCGTCCGTTTTT) and GPR30-402mis (sense:
AGGAACGATATGCATGCGATTTTT, antisense:
AATCGCATGCATATCGTTCCTTTT). The potential GPR30 siRNAs were evaluated
using a pSOS-HUS vector, which contains an siRNA site and a target gene site that allows
transfection of siRNAs and the target gene into the same cells. A sequence encoding green
fluorescent protein (GFP) is adjacent to an internal ribosome entry site (IRES), followed by
the target gene cloning site, so that observed GFP expression can be used as a marker for
GPR30 expression. When an siRNA inhibits the transcription of GPR30, the expression of
GFP is also reduced. Therefore, the expression of GFP observed can be used as a marker for
GPR30 expression.

A full sequence of GPR30 (Accession No: U92802) was cloned into the target gene cloning
site (SOS-GPR30-HUS). The siRNA or mismatch sequences were inserted into sfiI sites of
SOS-GPR30-HUS (SOS-GPR30-siRNA-HUSs and SOS-GPR30-mis-HUSs, respectively)
as described by Luo et al (2007), followed by NotI digestion after ligation. The clones
containing siRNA sequences were identified by PCR with U6 forward and siRNA antisense
primers. The SOS-GPR30-siRNA-HUSs or SOS-GPR30-mis-HUSs were transfected into
HEK293 cells using lipofectamine reagent (Invitrogen, Carlsbad, CA) to evaluate the
knockdown efficiency of the GPR30 siRNAs. The number and density of GFP-expressing
cells were observed for five consecutive days after the transfection.

The sequences of siRNAs in the SOS-GPR30-siRNA-HUS that significantly reduced the
number and brightness of GFP-containing cells as well as SOS-GPR30-mis-HUSs that had
no effect on GFP were selected and inserted into pSES-HUS vector, which is a shuttle
vector for adenovirus and contains a red fluorescent protein (RFP), as described above and
Luo et al (2007). The SES-GPR30-siRNA-HUSs and SES-GPR30-mis-HUSs were further
recombined into Ad-Easy-1 vector to generate high titer adenoviruses containing the GPR30
siRNA or mismatch sequences (GPR30-siRNA-Ads and GPR30-mis-Ads, respectively) (He
et al., 1998). The high titer GPR30-siRNA-Ads and GPR30-mis-Ads (~1011–12 active viral
particles/ml) were stored at −80°C. Before use, the high titer adenoviruses were dialyzed
with saline for at least 40min at 4°C followed by 1:1 dilution with saline to reduce tissue
damage caused by the high-salt storage solution.

To test the GPR30-siRNA-Ads in vivo, we conducted two studies. First, we tested the time-
course of GPR30 knockdown by GPR30-siRNA-Ads. Then, we confirmed that knockdown
of GPR30 was due to the GPR30-siRNA-Ads and not due to the viral injection or infection.
Rats were anesthetized and OVX as described in experiment 1, then given unilateral intra-
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PVN injections of GPR30-siRNA-Ads (402, 737, and 1135 combined) using stereotaxic
technique at a rate of 0.5 μl/min, 1 or 2 μl/side at the coordinates of AP= −1.8, ML= 0.5 and
DV= −8.3 mm with respect to the bregma. The needle (31 gage) was left in the injection site
for an additional 20min to reduce movement of the viral solution into the needle track.
Three, five, or 10 days after injection, rats were sacrificed and the brains were removed.
Brains were sectioned into 300 μm sections using a cryostat. Regions with viral injection as
indicated by RFP and the contralateral regions (as controls) were punched out for
immunoblot analysis of GPR30. The percent inhibition of GPR30-siRNA-Ads was
calculated by comparing the ratio of GPR30:β-actin between the injected side (I) and the
contralateral side (C) of each animal (% inhibition = (1−I/C) × 100%).

To confirm that observed knockdown of GPR30 protein was due to the GPR30-siRNA-Ads
and not a result of the virus itself or tissue damage caused by the injection, OVX rats were
given unilateral intra-PVN injections of saline, control-Ad (Adtrack, empty recombinant
shuttle vector), GPR30-mis-Ads (737 and 1135 combined), or GPR30-siRNA-Ads (402,
737, and 1135 combined) using stereotaxic technique as described above. Five days after
injection, rats were sacrificed and the brains were collected to evaluate the efficiency of
knockdown of GPR30 expression by the siRNAs, compared to the various controls, as
described above.

Effect of GPR30-siRNA-Ad on EB-induced desensitization of 5-HT1A receptors in the
PVN: Rats were anesthetized and OVX as described above, then given bilateral intra-PVN
injections of control-Ad or GPR30-siRNA-Ads (402, 737, 1135 combined) using stereotaxic
technique at a rate of 0.5 μl/min, 1 μl/side at the coordinates of AP= −1.8, ML= ±0.5, and
DV= −8.3 mm with respect to bregma. The needle was left in the injection site for an
additional 20min to reduce movement of the viral solution into the needle track. Five days
after OVX and viral injection, rats were treated with either 10 μg/kg/day EB or oil (s.c.)
once a day for two days. 18h after the last EB or oil treatment, rats were injected with
0.2mg/kg (+)8-OH-DPAT or saline (s.c.) and sacrificed via decapitation 15 minutes later.
Brains were removed and snap-frozen in dry-ice-cooled isopentane and then placed in dry
ice. Trunk blood was collected in tubes containing 0.5ml 3M EDTA (pH 7.4). Brains and
plasma were stored at −80°C until use.

Radioimmunoassay of plasma OT and ACTH: Plasma OT was determined by a
radioimmunoassay as previously described with minor modifications (Li et al., 1997).
Briefly, OT was extracted from 0.5 ml plasma with 1ml cold acetone followed by 2.5ml
petroleum ether. The ether layer was aspirated and the samples were dried in a Centrivap
vacuum concentrator at 4°C. The dried OT residue was resuspended in 1ml of cold assay
buffer (0.05M phosphate buffer pH 7.4 containing 0.125% bovine serum albumin and
0.001M EDTA). The plasma extracts were used for the radioimmunoassay as previously
described. The radioactive 125I oxytocin (specific activity: 2200 Ci/mmol) was obtained
from Perkin Elmer (Waltham, MA). Several standard recovery samples containing 0.5ml
pooled plasma and 8 and 16 pg OT were included throughout the extraction and assay
procedure. The plasma OT concentrations were calculated based on the recovery and
dilution factors. Plasma ACTH concentrations were determined by radioimmunoassay as
previously described (Li et al., 1993). 125I ACTH (0.00102mCi) was obtained from
DiaSorin (Stillwater, MN).

Quantitative Real-Time PCR: RNA was isolated from the PVN using TRI-Reagent
according to the manufacturer’s instruction (Sigma-Aldrich, St. Louis, MO). Briefly, 5 μg
RNA was treated with 5 μl DNase I in DNase I buffer (total reaction volume 50 μl) for
15min at room temperature; the reaction was stopped with 5 μl 25mM EDTA followed by
incubation at 65°C for 10min. 10 μl of the DNase-treated RNA reaction mixture was
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incubated with 1 μl 0.3M oligo(dT)20 and 1 μl 10mM dNTPs at 65°C for 5 minutes. A
master mix containing 5x reverse transcriptase buffer, 0.1M DTT, RNase Out, and 200 units
Superscript II enzyme (Invitrogen, Carlsbad, CA) was added to each sample according to the
manufacturer’s protocol. The reverse transcription was performed by incubation at 42°C for
50min and then reaction was stopped by incubation at 70°C for 15min. To cleave RNA
templates, 1 μl RNase H was then added to the reaction which was then incubated at 37°C
for 20 min. The complimentary DNA (cDNA) generated was used for real-time PCR.

Real-time quantitative PCR (qPCR) was performed in 96-well plates using SYBR Green
Plus master mix (Invitrogen, Carlsbad, CA) and the Applied Biosystems 7500 Fast Real-
Time PCR system (Applied Biosystems, Carlsbad, CA). mRNA levels of GPR30 (forward
primer: CCACGCTCAAGGCAGTCATA; reverse primer:
GCACTGCTGAACTTGACATCTGA), 5-HT1A receptor (forward primer:
GATCTCGCTCACTTGGCTCAT; reverse primer: GCGCCAGCCCAGCAT), and RGSz1
(forward primer: AGACATTCCAGCGTGTGAAGAA; reverse primer:
GGGCCCAGGCACAGACTT) were examined. The mRNA levels were normalized to
TATA-box binding protein (TBP) mRNA (forward primer:
CAGGAGCCAAGAGTGAAGAACA; reverse primer:
GCTTCTGCACAACTCTAGCGTATT). Each qPCR reaction was conducted in a total
volume of 20 μl, containing 2 μl cDNA, 0.2 μM of each primer, and 10 μl SYBR Green
Plus master mix. PCR was performed at 50°C for 2min, 95°C for 10min, then 40 cycles of
95°C for 15s and 60°C for 1min per cycle. All samples were run in triplicate. ΔCt was
calculated as the target gene – TBP mRNA for each sample; ΔΔCt was calculated as ΔCt
for the experimental condition − ΔCt for the control condition, for each target gene.

Immunoblot assays: The PVN was punched out from 300 μm-thick sections prepared using
a cryostat microtome. PVN tissue was homogenized in 100 μl homogenization buffer
(10mM Tris pH 7.6, 100mM NaCl, 1mM EDTA, 1% sodium cholate, 1% phosphatase
inhibitor cocktail (Sigma-Aldrich, St. Louis, MO), 0.1% protease inhibitor cocktail (Sigma-
Aldrich, St. Louis, MO)) by brief sonication followed by shaking for 1hr at 4°C. Samples
were then centrifuged at 25,000×g for 1hr; the supernatant was collected and stored at
−80°C. Protein concentration was measured using the Pierce BCA protein assay (Thermo
Scientific, Rockford, IL). Protein (10 μg/lane) was resolved on a 12% SDS-PAGE gel
followed by transfer to polyvinylidene fluoride (PVDF) membrane. The membranes were
incubated in blocking buffer (5% milk in Tris-buffered saline with 0.1% Tween-20) to
reduce non-specific binding and probed overnight using the following primary antibodies:
rabbit anti-GPR30 (1:1000, Novus Biologicals, Littleton, CO); rabbit anti-5-HT1A receptor
(1:1000, Abcam Cat.#85615, San Francisco, CA); rabbit anti-Gαz (1:2000, Santa Cruz
Biotechnology, Santa Cruz, CA); rabbit anti-RGSz1 (1:5000); rabbit anti-ERβ (1:1000,
Alexis Biochemicals/Enzo Life Sciences, Plymouth Meeting, PA). After washing,
membranes were incubated with the appropriate secondary antibody conjugated with horse
radish peroxidase. Bands were detected with ECL substrate solution (GE Healthcare
Biosciences, Piscataway, NJ) using BioRad ChemiDoc XRS+ molecular imager (BioRad,
Hercules, CA). Due to the limited amount of PVN protein, all primary antibodies were used
on the same blots, with washing in between uses. Monoclonal mouse actin antibody (1:10
000, MP Biomedicals, Solon, OH) was used as a loading control. Bands were analyzed
densitometrically (integrated optical density, IOD) using ImageLab software (BioRad,
Hercules, CA). Each band was normalized to actin and calculated as percent of the control
group in each blot. All samples were run in duplicate or triplicate.

Characterization of anti-RGSz1: RGSz1 antiserum was raised in rabbits against the last 15
amino acids of the C-terminal of RGSz1 (YKDLLTSLAEKTVEA) and affinity purified by
Biosynthesis (Lewisville, TX). To characterize the antibody, the full sequence of RGSz1
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was inserted into a pcDNA vector (Invitrogen, Carlsbad, CA) which was then transfected
into HEK293 cells. Cell lysates were collected, protein was resolved by SDS-PAGE, and
Western blotting was performed as described above. Representative Western blot is shown
in Figure 2A (left).

Microscopy: 18 μm-Thick tissue sections were collected from the beginning, middle, and
end of each 300 μl PVN section as described above to evaluate RFP expression. Images
were captured using a Nikon Eclipse Ti2000 and Metamorph Software (Molecular Devices,
Sunnyvale, CA) at 4x magnification.

Statistical analysis: All data are expressed as means ± SEM. Two- or three-way analysis of
variance (ANOVA) and Student-Newman-Keuls post hoc tests were conducted using a
statistical program (Statview version 5.0 software, SAS Institute Inc., Cary, NC).

Results
Experiment 1: Effects of EB on 5-HT1A receptor signaling in the PVN
EB induces desensitization of 5-HT1A receptor signaling: In our first experiment, female
SD rats were OVX and treated with EB (10 μg/kg/day) for two days. To confirm that two-
day EB treatment resulted in desensitization of 5-HT1A receptor signaling in our rat model,
18 hours after the second EB injection, the rats were challenged with the selective 5-HT1A
receptor agonist (+)8-OH-DPAT (0.2mg/kg) and plasma hormone levels were examined. EB
treatment did not alter the baseline levels of plasma OT in comparison to vehicle treatment
(Figure 1A). Activation of 5-HT1A receptors by (+)8-OH-DPAT increased plasma OT levels
in oil-treated rats as expected. The magnitude of the OT response to (+)8-OH-DPAT was
significantly reduced in EB-treated rats (two-way ANOVA: main effect of (+)8-OH-DPAT:
F(1,25)=299, p<0.0001; main effect of EB: F(1,25)=11.2, p<0.01; interaction between EB and
(+)8-OH-DPAT: F(1,25)=12.2, p<0.01).

Baseline levels of plasma ACTH were unchanged by two-day EB treatment (Figure 1B), and
stimulation of 5-HT1A receptors by (+)8-OH-DPAT increased plasma ACTH levels
significantly. The ACTH response to (+)8-OH-DPAT was significantly reduced in EB-
treated animals compared to oil treatment (two-way ANOVA: main effect of (+)8-OH-
DPAT: F(1,27)=533, p<0.0001; main effect of EB: (F(1,27)=9.47, p<0.01; interaction between
EB and (+)8-OH-DPAT: F(1,27)=11.0, p<0.01). Thus, both oxytocin and ACTH plasma
concentration results suggest the desensitization of 5-HT1A receptor signaling in the PVN.

EB treatment alters expression of components of the 5-HT1A receptor signaling pathway To
determine the cellular mechanisms mediating desensitization of 5-HT1A receptor signaling,
we examined effects of EB treatment on the 5-HT1A receptor system in the PVN at the
molecular level. EB reduced the protein levels of 5-HT1A receptors by 32% as measured on
Western blots (Figure 2A, right) (F(1,5)=9.08, p<0.05). Two RGSz1 bands (55kD, 45kD)
were measured. The protein levels in both bands were significantly increased by 79%
(F(1,5)=21.8, p<0.01) and 25% (F(1,5)=6.75, p<0.05), respectively, in the EB group compared
to the oil-treated group. There were no significant differences in the protein levels of either
Gαz protein (F(1,5)=2.26, p=0.21) or GPR30 protein (F(1,5)=0.32, p=0.59) (Figure 2B).

Quantitative real-time PCR was conducted to further examine the expression of components
of the 5HT1A receptor signaling pathway. Our results showed that EB treatment increased
mRNA levels of 5-HT1A receptor by 299% (EB vs. oil, F(1,6)=6.13, p<0.05). RGSz1 mRNA
levels increased by 308% (EB vs. oil, F(1,6)=10.2, p<0.05), while GPR30 mRNA did not
change significantly (F(1,6)=0.0001, p=0.99) (Figure 2C).
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Experiment 2: effects of reduction in the GPR30 expression on EB-induced
desensitization of 5-HT1A receptor in the PVN
Generation and evaluation of GPR30-siRNA-Ads: To select efficient GPR30 siRNA
sequences, SOS-GPR30-siRNA-HUSs and SOS-GPR30-mis-HUSs were transfected into
HEK293 cells. The cells transfected with GPR30-siRNA-HUS 402, 737 and 1135, but not
272 (numbers refer to first base pairs of each siRNA sequence), displayed reductions in the
number of GFP-containing cells and the intensity of GFP compared to SOS-GPR30-mis-
HUS and SOS-GPR30-HUS plasmids, beginning two days after transfection. Therefore, we
selected the 402, 737, and 1135 siRNA constructs for production of GPR30 siRNA
recombinant adenovirus (GPR30-siRNA-Ad). Figure 3A shows examples from 3 days after
transfection.

To test the time course of GPR30 knockdown by GPR30-siRNA-Ads, we unilaterally
injected 1 or 2 μl GPR30-siRNA-Ads into the PVN of rats (Figure 3B) and collected the
brains 3, 5 and 10 days after the injection. By comparing GPR30 expression in the viral
infected sides to their contralateral sides, we observed that the GPR30-siRNA-Ads
significantly inhibited the expression of GPR30 in a dose-dependent manner (% inhibition:
59 ± 8 (n=3) for 1 μl vs. 78± 5 (n=6) for 2 μl viral injection). This inhibition of GPR30
expression was observed 3 days after the injections. There was no difference in inhibition
between 3 and 5 days, but there was a slight, non-significant reduction in inhibition 10 days
after the injection (89% inhibition for 3 days, 86% for 5 days and 66% for 10 days after 2 μl
viral injection). These data demonstrated that the GPR30-siRNA-Ads are able to efficiently
knock down GPR30 expression 3 days after injection. Although no visible tissue damage
was observed, to avoid possible toxicity and to restrict the knockdown of GPR30 to the
PVN, we used 1 μl of GPR30-siRNA-Ads and the 5 day time point in further studies.

To compare the effects of the GPR30-siRNA-Ads with the GPR30-mis-Ads in vivo, we
unilaterally injected 1 μl of GPR30-siRNA-Ads into the PVN, with saline, empty viral
vector (Adtrack, control-Ad), or GPR30-mis-Ads as controls. In the GPR30-siRNA-Ads
construct, red fluorescent protein (RFP) is expressed independently of the siRNAs, making
the presence of RFP useful for tracking the virus infection (Figure 3C). Five days after the
injection of the virus, GPR30 protein level in the viral-infected side was measured and
percent inhibition was calculated relative to the contralateral (non-injected) side of each
animal (representative Western blots shown in Figure 3D). The GPR30-siRNA-Ads were
successful in reducing GPR30 protein expression by about 42%, compared to the
contralateral side (F(3,10)=6.23, p<0.01). None of the three controls had a significant effect
on GPR30 protein levels (Figure 3E). However, in a separate experiment (not shown),
GPR30-mis-Ads interfered with the neuroendocrine response. Therefore, we used control-
Ad as the control for the following experiment.

Effect of GPR30-siRNA-Ads on GPR30 in the PVN: To determine the role of GPR30 in
the EB-induced desensitization of 5-HT1A receptor signaling in the PVN, we performed
bilateral injections of control-Ad or GPR30-siRNA-Ad constructs in the PVN of OVX rats.
Five days after viral injection, rats were treated with 10 μg/kg/day EB or oil (s.c.) for two
days and then challenged with 0.2mg/kg (+)8-OH-DPAT (s.c.) before being sacrificed, as
described above. Knockdown of GPR30 was verified by Western blotting (Figure 4A). We
used both reduction in GPR30 levels and the location of RFP expression as exclusion
criteria for incorrect injections of GPR30-siRNA-Ads; rats with no RFP or RFP that was not
in the PVN were excluded from subsequent analyses. GPR30 protein was successfully
reduced to about 68% of control (F(1,12)=7.89, p<0.05) (Figure 4B). This 32% inhibition is a
little lower than the reduction in the previous test. This could be due to the way tissue was
collected and GPR30 levels compared: we measured GPR30 in the entire PVN if there was
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viral infection in at least part of the PVN, whereas previously we only injected one side of
the PVN and only used tissue that had RFP expression. ERβ expression can be influenced
by treatment with estradiol (Rossi et al., 2010); to ensure that effects of EB on 5-HT1A
receptor signaling in the neuroendocrine challenge tests were due to the reduction of GPR30
and not a change in ERβ levels, we measured ERβ protein in the PVN following infection
with GPR30-siRNA-Ads and found no significant change (F(1,15)=1.91, p=0.18) (Figure
4B).

Effect of GPR30-siRNA-Ads on EB-induced desensitization of 5-HT1A receptor
signaling: Desensitization of 5-HT1A receptor signaling was examined by measuring the
plasma levels of OT (Figure 5A) and ACTH (Figure 5B). The baseline level of plasma OT
was not altered by EB treatment or GPR30-siRNA-injection. In animals injected with the
control-Ad, activation of 5-HT1A receptors by (+)8-OH-DPAT increased plasma OT levels.
In the control-Ad-infected group, there was a significant reduction in OT response to (+)8-
OH-DPAT after EB treatment compared to oil treatment, demonstrating desensitization of 5-
HT1A receptor signaling. In the GPR30-siRNA-Ads-injected group, OT levels in response to
(+)8-OH-DPAT were not significantly different from the control-Ad-injected, oil-treated
group, and EB treatment did not induce 5-HT1A receptor signaling desensitization (three-
way ANOVA: main effect of viral injection, F(1,56)=2.19, p=0.14; main effect of (+)8-OH-
DPAT, F(1,56)=1219, p<0.0001; main effect of EB, F(1,56)=4.21, p<0.05; interaction between
EB and (+)8-OH-DPAT, F(1,56)=2.16, p=0.15; interaction between EB and viral injection,
F(1,56)=0.72, p<0.5; interaction between (+)8-OH-DPAT and viral injection, F(1,56)=2.39,
p=0.13; interaction between EB, (+)8-OH-DPAT, F(1,56)=0.39, p=0.76).

Plasma ACTH levels in response to (+)8-OH-DPAT showed a similar pattern. Neither EB
treatment nor GPR30-siRNA-Ad injection had an effect on baseline levels of plasma ACTH.
In animals injected with the control-Ad, activation of 5-HT1A receptors by (+)8-OH-DPAT
increased plasma ACTH levels, while EB treatment produced a significant reduction in
ACTH response to (+)8-OH-DPAT, demonstrating desensitization of 5-HT1A receptor
signaling. In the GPR30-siRNA-Ad-injected group, ACTH levels in response to (+)8-OH-
DPAT were not significantly different from the control-Ad-injected, oil-treated group, and
EB treatment did not have an effect on plasma ACTH levels (three-way ANOVA: main
effect of viral injection, F(1,62)=1.94, p=0.17; main effect of (+)8-OH-DPAT, F(1,62)=802,
p<0.0001; main effect of EB, F(1,62)=0.69, p=0.41; interaction between (+)8-OH-DPAT and
EB, F(1,62)=1.93, p=0.17; interaction between (+)8-OH-DPAT and viral injection,
F(1,62)=0.38, p=0.77; interaction between EB and viral injection, F(1,62)=5.12, p=0.27;
interaction between (+)8-OH-DPAT, EB, and viral injection, F(1,62)=5.04, p<0.05).

To further investigate the effects of EB treatment on 5-HT1A receptor signaling, we next
examined 5-HT1A receptor protein and the G protein mediating the hormone responses,
Gαz, using Western blotting (Figure 6A). EB pretreatment resulted in reduced levels of 5-
HT1A receptor protein in the control-Ad-injected group (F(1,35)=6.69, p<0.001); this effect
was not seen in the GPR30-siRNA-Ad-injected group, further suggesting that GPR30 may
be involved in the reduction of 5-HT1A receptor protein. The GPR30-siRNA-Ad injection
itself had no effect on 5-HT1A receptor protein levels. Levels of Gαz protein were
unchanged, regardless of treatment (F(1,35)=1.05, p=0.39) (Figure 6B).

Discussion
We previously reported that 2-day peripheral administration of EB resulted in the
desensitization of 5-HT1A receptor signaling in the rat PVN (D’Souza et al., 2004; Raap et
al., 2000). Our previous study demonstrated that this desensitization is not mediated by ERβ,
as treatment with a selective ERβ agonist, DPN, did not mimic the results of EB treatment.
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Furthermore, siRNA knockdown of ERβ in the PVN did not prevent EB-induced
desensitization of 5-HT1A receptor signaling (Rossi et al., 2010). However, 2-day intra-PVN
injections of the selective GPR30 agonist, G-1, did result in desensitization of 5-HT1A
receptor signaling (Xu et al., 2009). Therefore, in this study we chose to focus on the role of
GPR30. We show for the first time that GPR30 expression is necessary for the EB-induced
desensitization of 5-HT1A receptor signaling, and that this mechanism involves a decrease in
5-HT1A receptor protein expression and possibly an increase in the rate of Gαz-GTP
hydrolysis, as suggested by an increase in RGSz1 protein expression.

To identify the role of GPR30 in EB-induced changes in 5-HT1A receptor signaling, we
injected an adenovirus containing siRNA sequences against GPR30 directly into the PVN.
Treatment with GPR30-siRNA-Ads produced a modest reduction of GPR30 protein, by
about 32%. Despite such a modest reduction in GPR30 protein, GPR30-siRNA-Ads
infection was successful in completely preventing the reduction of both the OT and ACTH
hormone responses to (+)8-OH-DPAT produced by EB treatment, reinforcing the hypothesis
that GPR30 is necessary for estradiol-induced 5-HT1A receptor desensitization.

To further elucidate the GPR30-mediated mechanism through which EB impacts 5-HT1A
receptor desensitization, we examined changes in the 5-HT1A receptor signaling pathway.
Two-day treatment with EB resulted in a decrease in 5-HT1A receptor protein in the PVN,
which is consistent with previous studies that have reported a decrease in 5-HT1A receptor
binding sites in the hypothalamus and DRN of nonhuman primates (Lu and Bethea, 2002)
and reduced 5-HT1A receptor protein levels in the DRN (Henderson and Bethea, 2008) after
chronic estradiol treatment. In contrast, we found that 2-day EB treatment increased 5-HT1A
receptor mRNA. This upregulation of 5-HT1A receptor mRNA in the PVN may be a
feedback response to the decrease in protein levels induced by estradiol, or estradiol
signaling may be affecting 5-HT1A receptor translational control. Other studies have
demonstrated that acute estradiol administration decreased 5-HT1A receptor gene expression
in the rat limbic system (Osterlund and Hurd, 1998), while chronic estradiol decreased 5-
HT1A receptor mRNA in the rat DRN (Birzniece et al., 2001) but increased 5-HT1A receptor
mRNA in the DRN in nonhuman primates (Pecins-Thompson and Bethea, 1999). These
discrepancies could be due to tissue-specific regulatory mechanisms, differences in chronic
versus short-term estradiol administration, or species differences. Notably, the 32%
reduction in GPR30 induced by infection with the GPR30-siRNA-Ads prevented the EB-
induced changes in 5-HT1A receptor protein, thus reinforcing an important role for GPR30
in this mechanism.

There are some studies linking changes in 5-HT1A receptor expression to depression in
human female patients (Szewczyk et al., 2009), which would indicate a role for estradiol in
mediating 5-HT1A receptor expression as well as function. Pet-1, which is necessary for
development of the serotonin system (Hendricks et al., 1999; Hendricks et al., 2003; Iyo et
al., 2005; Maurer et al., 2004), directly binds to Pet-1 elements in the human 5-HT1A
receptor promoter region, and is critical for 5-HT1A receptor expression in the midbrain
(Jacobsen et al., 2011). In macaques, long-term OVX reduced expression of Pet-1 in the
DRN (Bethea et al., 2011), while in rats, two-day administration of estradiol after OVX
increased Pet-1 mRNA levels in the DRN (Rivera et al., 2009), indicating a clear role for
regulation of midbrain 5-HT1A receptor expression by estradiol. A reduction in inhibitory
DRN 5-HT1A autoreceptors, induced by estradiol via Pet-1, may play a role in desensitizing
post-synaptic 5-HT1A receptors in the PVN by increasing serotonergic tone, similar to
chronic SSRI treatment.

Though GPR30 is a membrane receptor that signals through heterotrimeric G proteins,
studies have demonstrated that signaling through GPR30 has effects on gene transcription
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independent of classical estrogen response elements (Albanito et al., 2007; Maggiolini et al.,
2004). GPR30 has been shown to act independently of ERα and ERβ to stimulate the
MAPK/ERK1/2 signaling system via a Bordetella-pertussis-toxin-sensitive (PTX), Gβγ
pathway (Filardo, 2002; Filardo et al., 2000). We showed previously that treatment with
PTX inhibits modulation of 5-HT1A receptor signaling by estradiol (Xu et al., 2009), which
again suggests that GPR30 signaling plays a role in this mechanism. In the current study, we
saw an estradiol-induced decrease in 5-HT1A receptor expression that was precluded by
GPR30 protein reduction. This suggests that estradiol could alter 5-HT1A receptor
expression levels through the GPR30-Gβγ, MAPK/ERK1/2 pathway by transiently
decreasing 5-HT1A receptor mRNA in the PVN. The subsequent decrease in 5-HT1A
receptor protein levels could then feedback to lead to upregulation of mRNA expression,
though the mechanisms remain unclear

5-HT1A receptors in the PVN are coupled to the G protein Gαz to stimulate OT and ACTH
(via CRF) release (Barr et al., 1997; Raymond et al., 1993; Serres et al., 2000). Previous
studies have shown that chronic estradiol treatment results in decreased DRN protein levels
of Gαi3, but not Gαi1, Gαi/o, or Gαz in nonhuman primates (Lu and Bethea, 2002).
Similarly, in the present study we found that 2-day EB administration had no effect on Gαz
protein or mRNA levels in the PVN. These results are consistent with previous reports
showing that estradiol treatment does not affect levels of Gαz protein in the rat PVN
(Carrasco et al., 2004; D’Souza et al., 2004). Knockdown of GPR30 by GPR30-siRNA-Ads
also had no effect on Gαz levels, indicating that GPR30 signaling does not regulate Gαz
protein levels, and that alteration of Gαz levels is not responsible for estradiol-mediated 5-
HT1A receptor desensitization.

While a decrease in 5-HT1A receptor protein expression may play a role in EB-induced
desensitization, it is interesting that estradiol treatment also reduces 5-HT1A receptor
function (D’Souza et al., 2004; Jackson and Uphouse, 1996, 1998; Raap et al., 2000) and
coupling to G proteins (Mize and Alper, 2000), though we show that Gαz protein expression
is not affected by EB. We therefore examined protein and mRNA expression of RGSz1, the
GAP that is highly selective for Gαz (Glick et al., 1998; Wang et al., 1998; Wang et al.,
2002). Consistent with a previous report (Carrasco et al., 2004), we found that 2-day EB
treatment increased RGSz1 protein and now have found an increase in RGSz1 mRNA in the
PVN. By increasing the hydrolysis of Gαz-GTP by over 400-fold (Wang et al., 1998), high
levels of RGSz1 could effectively reduce the ability of Gαz to activate downstream effectors
and hormone release upon 5-HT1A receptor stimulation, thus contributing to the desensitized
response. Work is currently being done in our laboratory to investigate the potential
interactions between RGSz1, Gαz, and 5-HT1A receptors.

Since OT-containing neurons express very little ERα (Simonian and Herbison, 1997), we
have not yet directly addressed ERα as a potential candidate for desensitization of 5-HT1A
receptor signaling. However, some studies have shown that hypothalamic neurons, as well
as other cell types, have a number of ERα splice variants that are located in the plasma
membrane and could mediate estradiol signaling (Acconcia et al., 2005; Bollig and
Miksicek, 2000; Dominguez et al., 2009; Dominguez and Micevych, 2010; Gorosito et al.,
2008; Ishunina and Swaab, 2008; Li et al., 2003). Recent studies have found a novel,
membrane-targeted, 36kD splice variant (ERα36) with a unique C-terminal sequence in
human tissues and human cell lines (Wang et al., 2005; Zou et al., 2009), and suggest that
ERα36 may be involved in responses heretofore believed to be mediated by GPR30. In ER-
negative breast cancer cell lines that express ERα36 (e.g. MDA-MB-231 and SK-BR-3), the
selective estrogen receptor modulator tamoxifen and ER antagonist ICI 182, 780 were
unable to block nongenomic estrogen signaling (Lee et al., 2008; Wang et al., 2006), similar
to effects seen when GPR30 is expressed (Filardo et al., 2006). A recent study by Kang et al.
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(2010) demonstrated that GPR30 expression and signaling induced ERα36 expression, that
G-1 specifically binds and activates ERα36, and that ERα36 mediates nongenomic estrogen
signaling independent of GPR30 in full-length-ERα-negative but ERα36-positive breast
cancer cells. They suggest that GPR30 signals through the Src/MAPK/AP-1 pathway to
activate ERα36 promoter activity and induce ERα36 expression, and that G-1 may be an
agonist for ERα36, not GPR30. Other studies have reported ERα36 effects or
immunoreactivity in rodent tissues; however, they failed to directly demonstrate expression
of this splice variant (Jia et al., 2011; Patkar et al., 2011). Indeed, we performed
immunohistochemical staining of rat brain tissue using the antibody kindly provided by
Wang’s group (Wang et al., 2006), raised against the unique C-terminal sequence of ERα36,
and found strong immunoreactivity in neurons throughout the rat brain. However, we
conducted a BLAST search for the unique 88 base pair sequence of human ERα36 in the rat
genome and no comparable sequence was detected. These data suggest that while it is
possible that the rat brain may contain an ERα splice variant that plays a role in estradiol-
GPR30 signaling, this putative splice variant is not the same as the ERα36 described in
humans.

The results of this study demonstrate that GPR30 expression is necessary for estradiol-
induced desensitization of 5-HT1A receptor signaling in the PVN, and that the mechanism
likely involves a decrease in 5-HT1A receptor protein levels and an increase in RGSz1
expression. Further studies are needed to clarify whether ERα or any of its splice variants
play a role in this mechanism. Because the effects of SSRIs occur slowly and are thought to
involve desensitization of pre-synaptic and post-synaptic 5-HT1A receptors (Bosker et al.,
2001; Chaput et al., 1986; Czachura and Rasmussen, 2000; Rush et al., 2004; Li et al., 1997;
Gunther et al., 2008; Raap et al., 1999, Bleir and de Montigny, 1994), elucidating the
estrogen-receptor-mediated mechanisms that result in rapid desensitization of 5-HT1A
signaling will be important in the design of novel treatments that activate specific estrogen
receptors in conjunction with SSRI therapy, for the improved treatment of depression and
other mood disorders.
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Figure 1.
EB treatment induces 5-HT1A desensitization. Plasma OT (A) and ACTH (B) levels in
response to saline or (+)8-OH-DPAT challenge in rats treated with oil or EB. Data are
presented as mean ±SEM (n=6–8/group). *Significantly different from saline-challenged
animals with same treatment, p<0.0001; #significantly different from oil/(+)8-OH-DPAT-
treated animals, p<0.005 by Student-Newman-Keuls post hoc test.
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Figure 2.
EB-induced changes in 5-HT1A signaling pathway. A) Left, characterization of RGSz1
antibody. RGSz1 protein at approximately 27kD was detected in HEK293 cells transfected
with a vector expressing RGSz1 protein but not empty-vector transfected cells. In rat PVN,
higher molecular weight proteins were also detected most likely due to post-translational
modifications. Lane 1, HEK293 cells transfected with RGSz1. Lane 2, HEK293 cells
transfected with empty vector (pcDNA). Lane 3, PVN tissue lysate. Right, Western blot of
PVN protein after oil or EB treatment with antibodies against GPR30, 5-HT1A, Gαz, and
RGSz1, with β-actin as a loading control. B) Quantitation of protein levels after EB
pretreatment. Bands were analyzed densitometrically (integrated optical density, IOD). Each
band was normalized to β-actin and expressed as percent of control (oil). Data are expressed
as mean ± SEM (n=6), *p<0.05, **p<0.001 by Student-Newman-Keuls post hoc test. C)
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qPCR of mRNA isolated from PVN tissue, normalized to control (oil). ΔCt was calculated
as the target gene – TBP mRNA for each sample; ΔΔCt was calculated as ΔCt for the
experimental condition − ΔCt for the control condition, for each target gene. Changes in
mRNA levels are expressed as mean 2−ΔΔCt ± SEM (n=4–6), *p<0.05 by Student-Newman-
Keuls post hoc test.
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Figure 3.
Generation and evaluation of recombinant adenoviruses containing GPR30-siRNAs. A)
Selection of GPR30-siRNAs: SOS-GPR30-siRNA-HUS (left panels), SOS-GPR30-mis-
siRNA- HUS (right panels), and SOS-GPR30-HUS (control) (right panels) constructs were
transfected into HEK293 cells. The number and brightness of GFP-containing cells were
observed three days after the transfection. B) Diagram of PVN injection site. F = fornix.
Vertical line represents the 3rd ventricle. PVN is within the dashed triangle. C) An example
of RFP expression in the PVN five days after unilateral injection of GPR30-siRNA-Ads. 3V
= 3rd ventricle. D) Examples of Western blot for GPR30 protein from PVN tissue with
unilateral injection of saline, control-Ad, GPR30-mis-Ads, and GPR30-siRNA-Ads five
days after infection. E) Quantitation of GPR30 knockdown. Bands were measured
densitometrically and normalized to β-actin. The percent inhibition of GPR30-siRNA-Ads
was calculated by comparing the ratio of GPR30:β-actin between the injected side (I) and
the contralateral side (C) of each animal (% inhibition = (1−I/C) × 100%). Data are
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presented as mean percent inhibition. ± SEM (n=4–5). *p<0.05 by Student-Newman-Keuls
post hoc test.
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Figure 4.
Confirmation of GPR30 knockdown. A) Examples of Western blots of GPR30 and ERβ
with β-actin as loading control in GPR30-siRNA-Ad- and control-Ad-injected PVN. B)
Quantitation of GPR30 knockdown and ERβ protein levels in the PVN of GPR30-siRNA-
Ad- and control-Ad-injected rats. Bands were measured densitometrically and normalized to
β-actin. Data are expressed as mean percent of control-Ad ± SEM (n=4–7), *p<0.01 by
Student-Newman-Keuls post hoc test.
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Figure 5.
Effects of GPR30-siRNA-Ads on plasma OT (A) and ACTH (B) responses to (+)8-OH-
DPAT in EB-treated rats. Data are expressed as mean ± SEM, (n=7–10). *Indicates
significantly different from saline-challenged animals with same treatment, p<0.0001,
#indicates significantly different from control-Ad/oil-treated rats with same challenge,
p<0.05 by Student-Newman-Keuls post hoc test.
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Figure 6.
GPR30-siRNA-Ads prevented EB-induced reductions of 5-HT1A receptor protein in the
PVN. A) Representative Western blots of 5-HT1A receptor and Gαz protein levels with β-
actin loading control in the PVN of rats injected with control-Ad or GPR30-siRNA-Ad
followed by treatment with oil or EB. B) Quantitation of Western blots. Bands were
measured densitometrically and normalized to β-actin. Data are expressed as mean percent
of control-Ad/oil, ± SEM (n=7–12). *p<0.001 by Student-Newman-Keuls post hoc test.
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