25 research outputs found
Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trialâ€
Aim High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. Objective: To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). Design and setting A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2–5) weeks after the last study infusion. Patients Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. Intervention Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. Main outcome measures The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. Results: The nominal change in the total atheroma volume (adjusted means) was −2.71, −3.13, −1.50, and −3.05 mm3 with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, −0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was −0.022, −0.036, −0.022, and −0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was −0.51, 2.65, 0.71, and −0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. Conclusion: CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; Trial registration number: NCT01201837
Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trialâ€
Aim High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. Objective To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). Design and setting A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2-5) weeks after the last study infusion. Patients Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. Intervention Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. Main outcome measures The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. Results The nominal change in the total atheroma volume (adjusted means) was −2.71, −3.13, −1.50, and −3.05 mm3 with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, −0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was −0.022, −0.036, −0.022, and −0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was −0.51, 2.65, 0.71, and −0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. Conclusion CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; Trial registration number: NCT0120183
Trappin-2/Elafin Modulate Innate Immune Responses of Human Endometrial Epithelial Cells to PolyI∶C
BACKGROUND: Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs) to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs). Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr) and its cleaved form, elafin (E), are alarm antimicrobials secreted by multiple cells, including genital epithelia. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated whether and how each Tr and E (Tr/E) contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI:C) and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr) to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI:C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI:C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI:C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. CONCLUSIONS AND SIGNIFICANCE: This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract