31 research outputs found

    Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial†

    Get PDF
    Aim High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. Objective To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). Design and setting A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2-5) weeks after the last study infusion. Patients Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. Intervention Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. Main outcome measures The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. Results The nominal change in the total atheroma volume (adjusted means) was −2.71, −3.13, −1.50, and −3.05 mm3 with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, −0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was −0.022, −0.036, −0.022, and −0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was −0.51, 2.65, 0.71, and −0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. Conclusion CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; Trial registration number: NCT0120183

    Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial†

    Get PDF
    Aim High-density lipoproteins (HDLs) have several potentially protective vascular effects. Most clinical studies of therapies targeting HDL have failed to show benefits vs. placebo. Objective: To investigate the effects of an HDL-mimetic agent on atherosclerosis by intravascular ultrasonography (IVUS) and quantitative coronary angiography (QCA). Design and setting A prospective, double-blinded, randomized trial was conducted at 51 centres in the USA, the Netherlands, Canada, and France. Intravascular ultrasonography and QCA were performed to assess coronary atherosclerosis at baseline and 3 (2–5) weeks after the last study infusion. Patients Five hundred and seven patients were randomized; 417 and 461 had paired IVUS and QCA measurements, respectively. Intervention Patients were randomized to receive 6 weekly infusions of placebo, 3 mg/kg, 6 mg/kg, or 12 mg/kg CER-001. Main outcome measures The primary efficacy parameter was the nominal change in the total atheroma volume. Nominal changes in per cent atheroma volume on IVUS and coronary scores on QCA were also pre-specified endpoints. Results: The nominal change in the total atheroma volume (adjusted means) was −2.71, −3.13, −1.50, and −3.05 mm3 with placebo, CER-001 3 mg/kg, 6 mg/kg, and 12 mg/kg, respectively (primary analysis of 12 mg/kg vs. placebo: P = 0.81). There was also no difference among groups for the nominal change in per cent atheroma volume (0.02, −0.02, 0.01, and 0.19%; nominal P = 0.53 for 12 mg/kg vs. placebo). Change in the coronary artery score was −0.022, −0.036, −0.022, and −0.015 mm (nominal P = 0.25, 0.99, 0.55), and change in the cumulative coronary stenosis score was −0.51, 2.65, 0.71, and −0.77% (compared with placebo, nominal P = 0.85 for 12 mg/kg and nominal P = 0.01 for 3 mg/kg). The number of patients with major cardiovascular events was 10 (8.3%), 16 (13.3%), 17 (13.7%), and 12 (9.8%) in the four groups. Conclusion: CER-001 infusions did not reduce coronary atherosclerosis on IVUS and QCA when compared with placebo. Whether CER-001 administered in other regimens or to other populations could favourably affect atherosclerosis must await further study. Name of the trial registry: Clinicaltrials.gov; Registry's URL: http://clinicaltrials.gov/ct2/show/NCT01201837?term=cer-001&rank=2; Trial registration number: NCT01201837

    Expression of two WFDC1/ps20 isoforms in prostate stromal cells induces paracrine apoptosis through regulation of PTGS2/COX-2

    Get PDF
    Background: WFDC1/Prostate stromal 20 (ps20) is a small secreted protein highly expressed within the prostate stroma. WFDC1/ps20 expression is frequently downregulated or lost in prostate cancer (PCa) and ps20 has demonstrated growth-suppressive functions in numerous tumour model systems, although the mechanisms of this phenomenon are not understood. Methods: Ps20 was cloned and overexpressed in DU145, PC3, LNCaP and WPMY-1 cells. Cellular growth, cell cycle and apoptosis were characterised. WPMY-1 stromal cells expressing ps20 were characterised by transcriptome microarray and the function of WPMY-1 conditioned media on growth of PCa cell lines was assessed. Results: Prostrate stromal 20 expression enhanced the proliferation of LNCaP cells, whereas stromal WPMY-1 cells were inhibited and underwent increased apoptosis. Prostrate stromal 20-expressing WPMY-1 cells secrete a potently proapoptotic conditioned media. Prostrate stromal 20 overexpression upregulates expression of cyclooxygenase-2 (COX-2) in LNCaP and WPMY-1 cells, and induces expression of a growth-suppressive phenotype, which inhibits proliferation of PCa cells by ps20-expressing WPMY-1 conditioned media. This growth suppression was subsequently shown to be dependent on COX-2 function. Conclusions: This work posits that expression of ps20 in the prostate stroma can regulate growth of epithelial and other tissues through the prostaglandin synthase pathway, and thereby restricts development and progression of neoplasms. This provides a rational for selective pressure against ps20 expression in tumour-associated stroma

    Mass spectrometry imaging for in situ kinetic histochemistry.

    Get PDF
    Tissues are composed of diverse cell subpopulations each with distinct metabolic characteristics that influence overall behavior. Unfortunately, traditional histopathology imaging techniques are 'blind' to the spatially ordered metabolic dynamics within tissue. While mass spectrometry imaging enables spatial mapping of molecular composition, resulting images are only a static snapshot in time of molecules involved in highly dynamic processes; kinetic information of flux through metabolic pathways is lacking. To address this limitation, we developed kinetic mass spectrometry imaging (kMSI), a novel technique integrating soft desorption/ionization mass spectrometry with clinically accepted in vivo metabolic labeling of tissue with deuterium to generate images of kinetic information of biological processes. Applied to a tumor, kMSI revealed heterogeneous spatial distributions of newly synthesized versus pre-existing lipids, with altered lipid synthesis patterns distinguishing region-specific intratumor subpopulations. Images also enabled identification and correlation of metabolic activity of specific lipids found in tumor regions of varying grade
    corecore