3 research outputs found

    OralImmunoAnalyser: a software tool for immunohistochemical assessment of oral leukoplakia using image segmentation and classification models

    Get PDF
    Oral cancer ranks sixteenth amongst types of cancer by number of deaths. Many oral cancers are developed from potentially malignant disorders such as oral leukoplakia, whose most frequent predictor is the presence of epithelial dysplasia. Immunohistochemical staining using cell proliferation biomarkers such as ki67 is a complementary technique to improve the diagnosis and prognosis of oral leukoplakia. The cell counting of these images was traditionally done manually, which is time-consuming and not very reproducible due to intra- and inter-observer variability. The software presently available is not suitable for this task. This article presents the OralImmunoAnalyser software (registered by the University of Santiago de Compostela–USC), which combines automatic image processing with a friendly graphical user interface that allows investigators to oversee and easily correct the automatically recognized cells before quantification. OralImmunoAnalyser is able to count the number of cells in three staining levels and each epithelial layer. Operating in the daily work of the Odontology Faculty, it registered a sensitivity of 64.4% and specificity of 93% for automatic cell detection, with an accuracy of 79.8% for cell classification. Although expert supervision is needed before quantification, OIA reduces the expert analysis time by 56.5% compared to manual counting, avoiding mistakes because the user can check the cells counted. Hence, the SUS questionnaire reported a mean score of 80.9, which means that the system was perceived from good to excellent. OralImmunoAnalyser is accurate, trustworthy, and easy to use in daily practice in biomedical labs. The software, for Windows and Linux, with the images used in this study, can be downloaded from https://citius.usc.es/transferencia/software/oralimmunoanalyser for research purposes upon acceptance

    MSCF: Multi-Scale Canny Filter to Recognize Cells in Microscopic Images

    No full text
    Fish fecundity is one of the most relevant parameters for the estimation of the reproductive potential of fish stocks, used to assess the stock status to guarantee sustainable fisheries management. Fecundity is the number of matured eggs that each female fish can spawn each year. The stereological method is the most accurate technique to estimate fecundity using histological images of fish ovaries, in which matured oocytes must be measured and counted. A new segmentation technique, named the multi-scale Canny filter (MSCF), is proposed to recognize the boundaries of cells (oocytes), based on the Canny edge detector. Our results show the superior performance of MSCF on five fish species compared to five other state-of-the-art segmentation methods. It provides the highest F1 score in four out of five fish species, with values between 70% and 80%, and the highest percentage of correctly recognized cells, between 52% and 64%. This type of research aids in the promotion of sustainable fisheries management and conservation efforts, decreases research’s environmental impact and gives important insights into the health of fish populations and marine ecosystems
    corecore