3,948 research outputs found

    Off-equilibrium corrections to energy and conserved charge densities in the relativistic fluid in heavy-ion collisions

    Full text link
    Dissipative processes in relativistic fluids are known to be important in the analyses of the hot QCD matter created in high-energy heavy-ion collisions. In this work, I consider dissipative corrections to energy and conserved charge densities, which are conventionally assumed to be vanishing but could be finite. Causal dissipative hydrodynamics is formulated in the presence of those dissipative currents. The relation between hydrodynamic stability and transport coefficients is discussed. I then study their phenomenological consequences on the observables of heavy-ion collisions in numerical simulations. It is shown that particle spectra and elliptic flow can be visibly modified.Comment: 10 pages, 5 figures; title changed, references added, conclusions unchange

    Metrological characterization of a vision-based system for relative pose measurements with fiducial marker mapping for spacecrafts

    Get PDF
    An improved approach for the measurement of the relative pose between a target and a chaser spacecraft is presented. The selected method is based on a single camera, which can be mounted on the chaser, and a plurality of fiducial markers, which can be mounted on the external surface of the target. The measurement procedure comprises of a closed-form solution of the Perspective from n Points (PnP) problem, a RANdom SAmple Consensus (RANSAC) procedure, a non-linear local optimization and a global Bundle Adjustment refinement of the marker map and relative poses. A metrological characterization of the measurement system is performed using an experimental set-up that can impose rotations combined with a linear translation and can measure them. The rotation and position measurement errors are calculated with reference instrumentations and their uncertainties are evaluated by the Monte Carlo method. The experimental laboratory tests highlight the significant improvements provided by the Bundle Adjustment refinement. Moreover, a set of possible influencing physical parameters are defined and their correlations with the rotation and position errors and uncertainties are analyzed. Using both numerical quantitative correlation coefficients and qualitative graphical representations, the most significant parameters for the final measurement errors and uncertainties are determined. The obtained results give clear indications and advice for the design of future measurement systems and for the selection of the marker positioning on a satellite surface

    Observations of Reduced Electron Gyroscale Fluctuations in National Spherical Torus Experiment H-Mode Plasmas with Large E X B Flow Shear

    Get PDF
    Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.X1129sciescopu

    Dark Matter and Pseudo-flat Directions in Weakly Coupled SUSY Breaking Sectors

    Full text link
    We consider candidates for dark matter in models of gauge mediated supersymmetry breaking, in which the supersymmetry breaking sector is weakly coupled and calculable. Such models typically contain classically flat directions, that receive one-loop masses of a few TeV. These pseudo-flat directions provide a new mechanism to account for the cold dark matter relic abundance. We discuss also the possibility of heavy gravitino dark matter in such models.Comment: 16 pages, 2 figures. v2: comments, refs adde

    Chiral Rings, Anomalies and Electric-Magnetic Duality

    Full text link
    We study electric-magnetic duality in the chiral ring of a supersymmetric U(N_c) gauge theory with adjoint and fundamental matter, in presence of a general confining phase superpotential for the adjoint and the mesons. We find the magnetic solution corresponding to both the pseudoconfining and higgs electric vacua. By means of the Dijkgraaf-Vafa method, we match the effective glueball superpotentials and show that in some cases duality works exactly offshell. We give also a picture of the analytic structure of the resolvents in the magnetic theory, as we smoothly interpolate between different higgs vacua on the electric side.Comment: 54 pages, harvmac. v2: typos correcte
    corecore