8 research outputs found
Search for intermediate mass black hole binaries with networks of ground-based gravitational-wave detectors
[no abstract
AstroEDU Report 2022/2023
AstroEDU (https://astroedu.iau.org) is the free, open-access platform for educational activities supported by the Office of Astronomy for Education (OAE) of the International Astronomical Union (IAU). Starting from the 1st of April 2022, astroEDU went through a deep reorganization: in this Report, we describe the first year of activities of the Editorial Board (1st of April 2022-1st of April 2023), its achievements and the plans for the near future
Gravitational Waves: Search Results, Data Analysis and Parameter Estimation. Amaldi 10 Parallel Session C2
The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity
Effects of Interplanetary Dust on the LISA drag-free Constellation
The analysis of non-radiative sources of static or time-dependent
gravitational fields in the Solar System is crucial to accurately estimate the
free-fall orbits of the LISA space mission. In particular, we take into account
the gravitational effects of Interplanetary Dust (ID) on the spacecraft
trajectories. The perturbing gravitational field has been calculated for some
ID density distributions that fit the observed zodiacal light. Then we
integrated the Gauss planetary equations to get the deviations from the LISA
keplerian orbits around the Sun. This analysis can be eventually extended to
Local Dark Matter (LDM), as gravitational fields are expected to be similar for
ID and LDM distributions. Under some strong assumptions on the displacement
noise at very low frequency, the Doppler data collected during the whole LISA
mission could provide upper limits on ID and LDM densities.Comment: 11 pages, 6 figures, to be published on the special issue of
"Celestial Mechanics and Dynamical Astronomy" on the CELMEC V conferenc
Modulation of LISA free-fall orbits due to the Earth-Moon system
We calculate the effect of the Earth-Moon (EM) system on the free-fall motion
of LISA test masses. We show that the periodic gravitational pulling of the EM
system induces a resonance with fundamental frequency 1 yr^-1 and a series of
periodic perturbations with frequencies equal to integer harmonics of the
synodic month (9.92 10^-7 Hz). We then evaluate the effects of these
perturbations (up to the 6th harmonics) on the relative motions between each
test masses couple, finding that they range between 3mm and 10pm for the 2nd
and 6th harmonic, respectively. If we take the LISA sensitivity curve, as
extrapolated down to 10^-6 Hz, we obtain that a few harmonics of the EM system
can be detected in the Doppler data collected by the LISA space mission. This
suggests that the EM system gravitational near field could provide an absolute
calibration for the LISA sensitivity at very low frequencies.Comment: 15 pages, 5 figure
Gravitational waves: search results, data analysis and parameter estimation
The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity