1,166 research outputs found
Perturbations of the optical properties of mineral dust particles by mixing with black carbon: A numerical simulation study
Field observations show that individual aerosol particles are a complex mixture of a wide variety of species, reflecting different sources and physico-chemical transformations. The impacts of individual aerosol morphology and mixing characteristics on the Earth system are not yet fully understood. Here we present a sensitivity study on climate-relevant aerosols optical properties to various approximations. Based on aerosol samples collected in various geographical locations, we have observationally constrained size, morphology and mixing, and accordingly simulated, using the discrete dipole approximation model (DDSCAT), optical properties of three aerosols types: (1) bare black carbon (BC) aggregates, (2) bare mineral dust, and (3) an internal mixture of a BC aggregate laying on top of a mineral dust particle, also referred to as polluted dust. DDSCAT predicts optical properties and their spectral dependence consistently with observations for all the studied cases. Predicted values of mass absorption, scattering and extinction coefficients (MAC, MSC, MEC) for bare BC show a weak dependence on the BC aggregate size, while the asymmetry parameter (g) shows the opposite behavior. The simulated optical properties of bare mineral dust present a large variability depending on the modeled dust shape, confirming the limited range of applicability of spheroids over different types and size of mineral dust aerosols, in agreement with previous modeling studies. The polluted dust cases show a strong decrease in MAC values with the increase in dust particle size (for the same BC size) and an increase of the single scattering albedo (SSA). Furthermore, particles with a radius between 180 and 300 nm are characterized by a decrease in SSA values compared to bare dust, in agreement with field observations. This paper demonstrates that observationally constrained DDSCAT simulations allow one to better understand the variability of the measured aerosol optical properties in ambient air and to define benchmark biases due to different approximations in aerosol parametrization
Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging
Aerosol
properties are transformed by atmospheric processes during long-range
transport and play a key role in the Earth's radiative balance. To understand
the molecular and physical characteristics of free tropospheric aerosol, we
studied samples collected at the Pico Mountain Observatory in the North
Atlantic. The observatory is located in the marine free troposphere at
2225 m above sea level, on Pico Island in the Azores archipelago. The site
is ideal for the study of long-range-transported free tropospheric aerosol
with minimal local influence. Three aerosol samples with elevated organic
carbon concentrations were selected for detailed analysis. FLEXPART
retroplumes indicated that two of the samples were influenced by North
American wildfire emissions transported in the free troposphere and one by
North American outflow mainly transported within the marine boundary layer.
Ultrahigh-resolution Fourier transform ion cyclotron resonance mass
spectrometry was used to determine the detailed molecular composition of the
samples. Thousands of molecular formulas were assigned to each of the
individual samples. On average  ∼ 60 % of the molecular formulas
contained only carbon, hydrogen, and oxygen atoms (CHO),  ∼ 30 %
contained nitrogen (CHNO), and  ∼ 10 % contained sulfur (CHOS). The
molecular formula compositions of the two wildfire-influenced aerosol
samples transported mainly in the free troposphere had relatively low average
O∕C ratios (0.48±0.13 and 0.45±0.11) despite the 7–10
days of transport time according to FLEXPART. In contrast, the molecular
composition of the North American outflow transported mainly in the boundary
layer had a higher average O∕C ratio (0.57±0.17) with 3 days of
transport time. To better understand the difference between free tropospheric
transport and boundary layer transport, the meteorological conditions along
the FLEXPART simulated transport pathways were extracted from the Global
Forecast System analysis for the model grids. We used the extracted
meteorological conditions and the observed molecular chemistry to predict the
relative-humidity-dependent glass transition temperatures (Tg) of
the aerosol components. Comparisons of the Tg to the ambient
temperature indicated that a majority of the organic aerosol components
transported in the free troposphere were more viscous and therefore less
susceptible to oxidation than the organic aerosol components transported in
the boundary layer. Although the number of observations is limited, the
results suggest that biomass burning organic aerosol injected into the free
troposphere is more persistent than organic aerosol in the boundary layer
having broader implications for aerosol aging.</p
Measurement of Free Tropospheric Aerosols in the North Atlantic at the Pico Mountain Observatory.
AAAR 31st Annual Conference. Minneapolis, Minnesota, October 8-12, 2012.The Pico Mountain Observatory is located at 2225 m amsl on an inactive volcano at Pico Island in the Azores archipelago in the North Atlantic ~3900 km east and downwind of North America (38º28'15''N; 28º24’'14''W). The unique location of the Observatory enables sampling of free tropospheric air transported over long, intercontinental distances and is rarely affected by local emissions. The Observatory is affected mainly by North American outflow after its trans-Atlantic transport. Therefore, its location is ideal for observations of long-range transported pollutants emitted from anthropogenic and biogenic continental sources. The composition of continental pollution outflow is altered during transport by mixing, chemical reactions, phase changes, and removal processes. Thus, the properties of aerosol and trace gases in downwind regions are impacted by the outflow of pollutants, their chemical transformation, and sinks. In previous work, the sampled air-mass measurements (including CO, O3, NOx, NOy, NMHC, black carbon and aerosol optical size) and the simulations of their dispersion indicated outflow of North American tropospheric ozone and its precursors. Although the measurements have been crucial in explaining the evolution of North American gaseous pollution, little is known regarding the nature of the aged aerosol. New work is currently underway at the Observatory to provide chemical characterization of the intercepted free tropospheric aerosols. Here, we show the preliminary results of the free tropospheric aerosol composition and its physical properties. Samples were collected using high-volume filter samplers with quartz filters and analyzed for organic and elemental carbon (OC and EC, respectively). We compare the observed OC and EC values to the collocated measurements of gas- and particle-phase species, meteorological parameters and to the values found in current literature. We highlight the future work in which we will select filter samples based on the arrival of highly polluted air masses from anthropological or biomass burning emissions for further detailed analysis
Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source
A novel multi-wavelength photoacousticnephelometer spectrometer (SC-PNS) has been developed for the optical characterization of atmospheric aerosol particles. This instrument integrates a white light supercontinuum laser with photoacoustic and nephelometric spectroscopy to measure aerosol absorption and scattering coefficients at five wavelength bands (centered at 417, 475, 542, 607, and 675 nm). These wavelength bands are selected from the continuous spectrum of the laser (ranging from 400-2200 nm) using a set of optical interference filters. Absorption and scattering measurements on laboratory-generated aerosol samples were performed sequentially at each wavelength band. To test the instrument we measured the wavelength dependence of absorption and scattering coefficients of kerosene soot and common salt aerosols. Results were favorably compared to those obtained with a commercial 3-wavelength photoacoustic and nephelometer instrument demonstrating the utility of the SC light source for studies of aerosol optical properties at selected wavelengths. Here, we discuss instrument design, development, calibration, performance and experimental results
Measurements of ice nucleation by mineral dusts in the contact mode
Formation of ice in Earth\u27s atmosphere at temperatures above approximately −20 °C is one of the outstanding problems in cloud physics. Contact nucleation has been suggested as a possible mechanism for freezing at relatively high temperatures; some laboratory experiments have shown contact freezing activity at temperatures as high as −4 °C. We have investigated Arizona Test Dust and kaolinite as contact nuclei as a function of size and temperature and find that the fraction of submicron particles that are active as contact ice nuclei is less than 10−3 for −18 °C and greater. We also find that the different dusts are quite distinct in their effectiveness as contact nuclei; Arizona Test Dust catalyzed freezing in the contact mode at all mobility diameters we tested at −18 °C whereas kaolinite triggered freezing only for mobility diameters of 1000 and 500 nm at that temperature
Ten Years of Black Carbon Measurements in the North Atlantic at the Pico Mountain Observatory, Azores (2225m asl).
45th annual Fall Meeting, AGU. San Francisco, California, 3-7 December.The Pico Mountain Observatory is located in the summit caldera of the Pico mountain, an inactive volcano on the Pico Island in the Azores, Portugal (38.47°N, 28.40°W, Altitude 2225m asl). The Azores are often impacted by polluted outflows from the North American continent and local sources have been shown to have a negligible influence at the observatory. The value of the station stems from the fact that this is the only permanent mountaintop monitoring station in the North Atlantic that is typically located above the marine boundary layer (average MBL heights are below 1200 m and rarely exceed 1300 m) and often receives air characteristic of the lower free troposphere. Measurements of black carbon (BC) mass have been carried out at the station since 2001, mostly in the summer seasons. Here we discuss the BC decadal dataset (2001-2011) collected at the site by using a seven-wavelength AE31 Magee Aethalometer. Measured BC mass and computed Angstrom exponent (AE) values were analysed to study seasonal and diurnal variations. There was a large day-to-day variability in the BC values due to varied meteorological conditions that resulted in different diurnal patterns for different months. The daily mean BC at this location ranged between 0 and ~430 ngm-3, with the most frequently occurring value in the range 0-100 ngm-3. The overall mean for the 10 year period is ~24 ngm-3, with a coefficient of variation of 150%. The BC values exhibited a consistent annual trend being low in winter months and high in summer months, barring year to year variations. To differentiate between BC and other absorbing particles, we analyzed the wavelength dependence of aerosol absorption coefficient and determined a best-fit exponent i.e., the Ångström exponent, for the whole dataset. Visible Ångström exponent (AE: 470-520-590-660 nm) values ranged between 0 and 3.5, with most frequently occurring values in the range 0.85 to 1.25. By making use of the aethalometer light attenuation measurements at different wavelengths and Hysplit back trajectories, we divided the data into two categories. One for periods characterized by AE values close to 1; these periods are typically correlated with back trajectories originating from Canada, North America or northern Europe, indicating the dominance of BC on the light attenuation. Another characterized by AE values substantially different from 1; these periods correlated with back trajectories originating from dust-prone regions (e.g., the Sahara desert).The above measurements, with the aid of ancillary satellite and ground-based measurements will be employed in estimating the radiaitve effects of BC in the North Atlantic
Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy
Soil aggregation is considered as a crucial process in agro-system sustainability due to the role in soil physical, chemical and biological dynamics. Here we tested the hypothesis that the initial chemical traits of organic matter (OM) may help to explain the variability of soil aggregation dynamics after organic amendment. We characterized ten OM types (alfalfa litter, biochar, cellulose, glucose, green compost, maize litter, manure compost, meat powder, sawdust, and solid digestate) by 13C-CPMAS NMR and elemental chemical features to investigate the effects of amendment quality on soil aggregation. In a manipulative factorial experiment, dry samples (200 g) of three soil types (S1, S2 and S3) with different texture, high pH (7\u20139), and similar OM content, were incorporated with 4 g (2% w/w) of dry, 2 mm-grounded OM, incubated in mesocosms for 300 days under controlled temperature (18 \ub1 2 \ub0C night and 24 \ub1 2 \ub0C day), and sampled at 4 dates for measuring aggregation index (AI), based on water stability of soil aggregates (WSA). We found that meat powder and alfalfa litter induced a rapid initial increase of AI, exceeding that of the controls by one to two orders of magnitude, likely acting as a C source for microbes. Biochar incorporation in soil barely affected AI, with intermediate effects with other OM types. Considering C bond types corresponding to OM 13C-CPMAS NMR spectral regions, carbonyl C was only correlated to early AI, possibly due to overlapping signals of amide structures; O-alkyl C and di-O-alkyl C (carbohydrate fraction) were positively associated to AI, indicating a promoting effect on soil structure, while aromatic C fractions showed an opposite pattern, possibly related to aggregate protection by coatings associated to water repellency, or to direct aggregate internal binding. This study demonstrates that OM chemical quality plays an important role in soil aggregation process, with the molecular composition defined by 13C-CPMAS NMR spectroscopy being more predictive of aggregation dynamics compared to classical elemental features. As such,
this study provides a significant novel contribution to clarify the relationships between OM chemistry and soil aggregation
Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy
Soil aggregation is considered as a crucial process in agro-system sustainability due to the role in soil physical, chemical and biological dynamics. Here we tested the hypothesis that the initial chemical traits of organic matter (OM) may help to explain the variability of soil aggregation dynamics after organic amendment. We characterized ten OM types (alfalfa litter, biochar, cellulose, glucose, green compost, maize litter, manure compost, meat powder, sawdust, and solid digestate) by 13C-CPMAS NMR and elemental chemical features to investigate the effects of amendment quality on soil aggregation. In a manipulative factorial experiment, dry samples (200 g) of three soil types (S1, S2 and S3) with different texture, high pH (7\u20139), and similar OM content, were incorporated with 4 g (2% w/w) of dry, 2 mm-grounded OM, incubated in mesocosms for 300 days under controlled temperature (18 \ub1 2 \ub0C night and 24 \ub1 2 \ub0C day), and sampled at 4 dates for measuring aggregation index (AI), based on water stability of soil aggregates (WSA). We found that meat powder and alfalfa litter induced a rapid initial increase of AI, exceeding that of the controls by one to two orders of magnitude, likely acting as a C source for microbes. Biochar incorporation in soil barely affected AI, with intermediate effects with other OM types. Considering C bond types corresponding to OM 13C-CPMAS NMR spectral regions, carbonyl C was only correlated to early AI, possibly due to overlapping signals of amide structures; O-alkyl C and di-O-alkyl C (carbohydrate fraction) were positively associated to AI, indicating a promoting effect on soil structure, while aromatic C fractions showed an opposite pattern, possibly related to aggregate protection by coatings associated to water repellency, or to direct aggregate internal binding. This study demonstrates that OM chemical quality plays an important role in soil aggregation process, with the molecular composition defined by 13C-CPMAS NMR spectroscopy being more predictive of aggregation dynamics compared to classical elemental features. As such,
this study provides a significant novel contribution to clarify the relationships between OM chemistry and soil aggregation
Effects of Mechanical Winter Pruning on Vine Performances and Management Costs in a Trebbiano Romagnolo Vineyard: A Five-Year Study
Vineyard mechanical winter pruning has been spreading worldwide, and the physiological basis ascribable to it has been consolidated throughout the years. Despite labor savings and reduction of costs having been proven, the demonstration of its economic viability might be challenging. In this context, this work aims to evaluate the vine performances and the costs of different degrees of the mechanization of winter pruning over a five-year trial (2011-2015). In a vineyard of cv. Trebbiano Romagnolo (Vitis vinifera L.) located in northern Italy, three pruning treatments were laid out as follows: (a) manual pruning (MAN); (b) mechanical pre-pruning and simultaneous manual follow-up (MP + F); (c) mechanical pruning without a manual follow-up (MP). The results showed a strong increase in the node number of MP. Nevertheless, the yield compensation factors (i.e., the shoot fruitfulness and cluster weight) limited the increase in productivity. Soluble solids did not differ between the pruning treatments, while titratable acidity resulted slightly higher only on the MP berries. The MP treatment was the most economically convenient, with a vineyard surface of 1.5 hectares, while mechanical pruning with manual finishing resulted more advantageous, compared to manual pruning when the vineyard surface was greater than 2.9 hectares. The agronomic and economic results obtained in this five-year trial suggest that mechanical pruning may be profitably applied also on grapevine varieties characterized by low basal bud fruitfulness, such as Trebbiano Romagnolo
- …