37 research outputs found

    Analysis, design and testing of high pressure waterjet nozzles

    Get PDF
    The Hydroblast Research Cell at MSFC is both a research and a processing facility. The cell is used to investigate fundamental phenomena associated with waterjets as well as to clean hardware for various NASA and contractor projects. In the area of research, investigations are made regarding the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current industrial methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents, and high pressure waterjet cleaning has proven to be a viable alternative. Standard methods of waterjet cleaning use hand held or robotically controlled nozzles. The nozzles used can be single-stream or multijet nozzles, and the multijet nozzles may be mounted in a rotating head or arranged in a fan-type shape. We consider in this paper the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage (e.g. the formation of 'islands' of material not cleaned) and damage to the substrate from the waterjet have been observed. In addition, current stripping operations require the nozzle to be placed at a standoff distance of approximately 2 inches in order to achieve adequate performance. This close proximity of the nozzle to the target to be cleaned poses risks to the nozzle and the target in the event of robot error or the striking of unanticipated extrusions on the target surface as the nozzle sweeps past. Two key motivations of this research are to eliminate the formation of 'coating islands' and to increase the allowable standoff distance of the nozzle

    Design of high pressure waterjet nozzles

    Get PDF
    The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC) such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable alternative to the use of solvents. A popular method of waterjet cleaning involves the use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This method enables rapid cleaning of a large area, but problems such as incomplete coverage and damage to the substrate from the waterjet have been observed. This report summarizes research consisting of identifying and investigating the basic properties of rotating, multijet, high pressure water nozzles, and how particular designs and modes of operation affect such things as stripping rate, standoff distance and completeness of coverage. The study involved computer simulations, an extensive literature review, and experimental studies of different nozzle designs

    A Small-Satellite Demonstrator for Generating Artificial Gravity in Space via a Tethered System

    Get PDF
    It is well-known that prolonged exposure in humans to a microgravity environment leads to significant loss of bone and muscle mass; this presents a formidable obstacle to human exploration of space, particularly for missions requiring travel times of several months or more, such as a 6 to 9mon th trip to Mars. Artificial gravity may be produced by spinning a spacecraft about its center of mass, but since the g– force generated by rotation is equal to “omega-squared times r” (where omega is its angular velocity and r is the distance from the center of rotation), we have that unless the distance from the center of rotation is several kilometers, the rotation rate required to generate “1 − g” would induce vertigo in the astronauts as they moved about the capsule (e.g. if the distance from the center of rotation is 10 meters, the required rotation rate for 1 − g would be 9.5 rpm). By tethering the crew capsule to an object of nearly equal mass (such as the spent final rocket stage) at a distance of 1 to 2 kilometers, the necessary rotation rate would be sufficiently small as to not cause discomfort for the astronauts. For example, if the distance from the center of rotation is 2 kilometers, the required rotation rate for 1−g would be 0.67 rpm; at 1 kilometer the rate is still only 0.95 rpm. 1 rpm is considered an acceptable spin rate for the human body to withstand for extended periods of time. This paper gives an overview of the Tethered Artificial Gravity (TAG) satellite program, a 2-part program to study the operation and dynamics of an artificial-gravity-generating tethered satellite system. Phase I of the program will culminate in a flight of a model spacecraft in a non-ejected Get-Away-Special (GAS) Canister on the Space Shuttle. It is to be operated under the aegis of the Texas Space Grant Consortium. The purpose of the Phase I flight is to test key components of the system to be flown in Phase II of the program. Phase I will also involve detailed modeling and analysis of the dynamics of the spacecraft to be flown in Phase II of the program; the Phase II spacecraft will be a small, 65 kg, tethered satellite system which will be boosted into low-earth orbit, deployed and then spun-up to produce artificial gravity. In addition to a description of the TAG program, results of parametric studies related to TAG will be presented in this paper

    Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    Get PDF
    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability

    TESSX: A Mission for Space Exploration with Tethers

    Get PDF
    Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis

    Dynamic Modeling and Simulation of a Real World Billiard

    Full text link
    Gravitational billiards provide an experimentally accessible arena for testing formulations of nonlinear dynamics. We present a mathematical model that captures the essential dynamics required for describing the motion of a realistic billiard for arbitrary boundaries. Simulations of the model are applied to parabolic, wedge and hyperbolic billiards that are driven sinusoidally. Direct comparisons are made between the model's predictions and previously published experimental data. It is shown that the data can be successfully modeled with a simple set of parameters without an assumption of exotic energy dependence.Comment: 10 pages, 3 figure

    Dynamics of an Inelastic Gravitational Billiard with Rotation

    Full text link
    The seminal physical model for investigating formulations of nonlinear dynamics is the billiard. Gravitational billiards provide an experimentally accessible arena for their investigation. We present a mathematical model that captures the essential dynamics required for describing the motion of a realistic billiard for arbitrary boundaries, where we include rotational effects and additional forms of energy dissipation. Simulations of the model are applied to parabolic, wedge and hyperbolic billiards that are driven sinusoidally. The simulations demonstrate that the parabola has stable, periodic motion, while the wedge and hyperbola (at high driving frequencies) appear chaotic. The hyperbola, at low driving frequencies, behaves similarly to the parabola; i.e., has regular motion. Direct comparisons are made between the model's predictions and previously published experimental data. The value of the coefficient of restitution employed in the model resulted in good agreement with the experimental data for all boundary shapes investigated. It is shown that the data can be successfully modeled with a simple set of parameters without an assumption of exotic energy dependence.Comment: 11 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1103.443

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes
    corecore