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Introduction

The Hydroblast Research Cell at Marshall Space Flight Center is used to investigate the use

of high pressure waterjets to strip paint, grease, adhesive and thermal spray coatings from

various substrates. Current methods of cleaning often use ozone depleting chemicals (ODC)

such as chlorinated solvents. High pressure waterjet cleaning has proven to be a viable

alternative to the use of solvents [4, 5]. A popular method of waterjet cleaning involves the

use of a rotating, multijet, high pressure water nozzle which is robotically controlled. This

method enables rapid cleaning of a large area, but problems such as incomplete coverage

(e.g. the formation of "islands" of material not cleaned) and damage to the substrate from

the waterjet have been observed.

This report summarizes research conducted by the author as a Summer Faculty Fellow

at MSFC in 1994. The project consisted of identifying and investigating the basic properties

of rotating, multijet, high pressure water nozzles, and how particular designs and modes of

operation affect such things as stripping rate, standoff distance and completeness of coverage.

The study involved computer simulations, an extensive literature review, and experimental

studies of different nozzle designs.

Definitions

Since there is no widespread convention regarding terminology of waterjet production, we

define here the terms used in this paper: target: object upon which waterjet impinges,

substrate: material to be cleaned, usually coated with paint, grease or other material

which needs to be removed via waterjet, coating: generic name for material to be removed

from substrate, nozzle: device for delivering high pressure waterjets to target - is usually

attached to a robotic arm, orifice: final exit device for waterjet - there are several orifices on

a single multijet nozzle, orifice configuration: placement of orifices on surface of nozzle,

orifice geometry: the internal structure of an individual orifice, sweep rate: rate at which

nozzle is moved parallel to the target, or target is moved past nozzle (as is the case when the

target is on a rotating turntable), nozzle angular velocity: rate at which nozzle rotates,

standoff distance: distance from nozzle to target, islands: regions of the target where the

coating has not been removed from the substrate after waterjet cleaning, dwell time: the

amount of time a waterjet is in continuous contact with a particular region of the target,

stripping width: width of the cleaning path as the nozzle is moved over the target.

Factors Affecting Waterjet Cleaning Requirements

Of paramount concern in waterjet cleaning is maintaining the integrity of the substrate.

Thus, for a particular material, we need to know the effect of standoff distance, water

pressure and dwell time on the substrate to be cleaned and the coating to be removed.

This information is not the focus of this paper and hence will be assumed to be known,

either through theory, or more likely, through experiment. Given this information, standoff

distance, water pressure and dwell time can be adjusted so that the coating is removed

and the substrate is not damaged. The impact of the water on the target increases with

increases in pressure and dwell time and decreases with increased standoff distance. It may
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be necessaryto makeseveralpassesoverthe target in order to removethe coatingwithout
damagingthe substrate. This can alsobe accomplishedvia overlapfrom multiple jets.

Another important constraint is the time required to clean the target. This will be
a function of the stripping width, the sweeprate and the number of passesnecessaryfor
cleaning.

Standoff distancewill beconstrainedby the geometryof the target. For a perfectly flat
plate, there is no constraint on possiblestandoff distance.If there areprotrusions,however,
suchasbolts or ridges, then this will limit the possiblestandoffdistances,unlessthe robot
to which the nozzle is attached is equippedwith the meansto adjust to variations in the
target geometry.

Factors Affecting Waterjet Cleaning Performance

To maximize waterjet cleaning performance, it desirable to have complete coverage, i.e. to

eliminate the production of coating "islands", and have the largest possible standoff distance.

The coverage aspect of waterjet cleaning will be a function of the orifice configuration. The

standoff distance will be a function of the compactness of the jet issuing from each orifice.

Jet compactness is determined by the way in which the water is delivered to the individual

orifices, and the internal geometry of each orifice.

Coverage

The main factors affecting coverage are the number of orifices and the placement of these

orifices on the nozzle.

The angular velocity of the nozzle necessary for full coverage goes down as the number

of orifices increases. However, since there is a maximum flow rate associated with each

pump, there is a limit to the number of orifices that can be added. (In theory, an unlimited

number of orifices can be added by simply decreasing the exit diameter of each orifice, but

manufacturing considerations place a lower limit on the diameter of the orifice.) Below, we

derive a formula for the maximum number of orifices that can be placed on a nozzle for a

given flow rate, pressure and orifice exit diameter. Let F = flow rate, A = cross sectional area

of orifice exit, v = exit velocity of waterjet, d -- exit diameter of orifice, p - pump pressure,

Pa -- atmospheric pressure, p -- density of water and n = number of orifices. Then F = nvA.
r----------------"

But A = 7rd2/4 and from a modification of Bernoulli's law we have v = c_/_, where
V "

c_ is an experimentally determined constant called the velocity coefficient which is usually

between 0.9 and 0.95 [4]. So, n < 4F /___2_.__ For a conservative assessment of n, we set
-- 7rd 2 V 2(p-pa) •

c_ = 1. Thus if F = 13 gpm -- 50in3/sec, p = 36,000 psi, and d -- .019in, we have n < 6.36

(i.e. n < 6). Once the number of orifices for the nozzle is chosen, the effect of different

placements can be studied.

In studying the effect of orifice placement, we consider the path traced by each orifice as

the nozzle rotates and translates. We label the orifices i = 1, ..., n and denote their positions

by radial distance from the center, ri, and angular position on the nozzle, _i, as shown in

Fig. la. Then the path traced out by each orifice is given by the set of parametric equations

{_, = rot + r_ cos (_t + _i + _0), Y = ri sin (_t + _ + _0)} where v0 is the sweep rate, _ is

..y
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the angular velocity of the nozzleand _0 is the angular displacementof the line from the
center of the nozzleto orifice number 1 from the z axis at t = 0. Fig.lb showsthe path
traced out by a singleorifice overone completerotation of the nozzle. It canbe seenfrom
this figure that the trace assumesa roughly circular shape. It then seemsreasonableto
try and designa systemsuchthat the "circle" tracedby eachorifice lies exactly onetrace
width to the right of the "circle" traced by the precedingorifice. (The tracewidth will be
determined by the jet shapeand standoff distance.)

Oneway to accomplishthis is to arrangethe orificesat an equaldistancefrom the center
of the nozzlewith equalangularspacing.Then, if the minimum tracewidth of all the orifices
is denoted by wt, sweep rate and angnlar velocity must satisfy the relation oJ > _ if we

-- n,/V t

are to have complete coverage [4]. For example, if n = 6, wt = 0.5 mm and vo = 30 ram,

then we require w > 20r for complete coverage. Fig.2a shows the trace of a single orifice (for

w = 207r) and Fig.2b shows the trace of the complete nozzle and demonstrates that complete

coverage is achieved. Note that each point on the target is actually hit at least twice, once

by the "right" half of a "circle", and once by the "left" half of a "circle". Points at the top

and bottom of the path will be hit several times, with the exact number dependent upon the

shape and dimensions of the trace. Increasing w, or decreasing v0, will increase the amount

of overlap and hence the number of times each point on the target will be hit by a waterjet.

Many existing rotary nozzles have orifices placed at various radial distances from the

center of the nozzle. If we take, for example, rl = 7, r2 = 14, r3 = 21, r4 = 28, rs = 35, r6 = 42

(millimeters), we can see that each nozzle will trace out a band of height hi = 14, h2 =

28,... h6 = 84 (millimeters). Combining these in Fig.3 for the same v0 and _ as for the

nozzle whose trace is depicted in Fig.2b, we see that the nozzle will trace out a pattern

which leaves many coating "islands" where water does not hit the target. This has been

observed in hydroblast operations at MSFC. Thus a nozzle with orifices all at an equal

distance from the center of the nozzle with equal angular spacing gives superior coverage

compared to a nozzle whose orifices are arranged at unequal distances from the center. The

latter nozzle design would be more appropriate for applications such as rock drilling, where

it is desirable to have more energy delivered to the center of the target than at the edges.

The preceding analysis assumes that all of the orifices emit jets that travel parallel to

the centerline of the nozzle and that the centerline is aligned perpendicular to the target

which is assumed flat. If the nozzles are slanted with respect to the nozzle and the nozzle

is slanted with respect to the target (as shown in Fig.4), then the trace width will vary

over each complete revolution of the nozzle. A precise characterization of the jet shape is

thus necessary to determine what the trace will be. The jet shape is a primarily a function

of the orifice geometry and the water pressure, as is discussed below. We note here that

the influence of gravity on the jet must also be accounted for, although this effect will be

negligible for short jets.

Water Delivery System

In order to have a jet stream which can travel a long distance before breaking up, it is

necessary to have a non-turbulent flow delivered to the orifices. Therefore, the channel

which delivers the water to the orifices should be designed so that bends (especially right

angles) are minimized.
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Orifice Geometry and Jet Compactness

A liquid jet issuing into the air has a structure [4] which consists of a core surrounded be

a layer of droplets (Fig.5). Increasing the core length increases the standoff distance we

can use in cleaning operations. We call the region of the jet which contains a core the

"compact" region of the jet. Many papers have studied the effect of various orifice designs

on jet compactness [1-3, 6]. Once a basic shape for the internal profile of the orffice is

chosen, one can attempt to maximize the core length of the jet produced by varying the

internal parameters of the orifice. For this study, two basic orifice geometries (see Figs.6a

and 6b) were selected after a thorough literature search for orifice designs which yield highly

compact jets. To start the process of optimizing these designs, it was decided that the effect

of various L/D ratios on jet compactness would be studied experimentally. The method

chosen for evaluating the nozzles was high speed video imaging. At the time of completion

of this report, manufacture of the nozzles was not complete, so test results will have to be

presented in a future report.

Summary

Basic properties of rotating, multijet, high pressure water nozzles have been outlined. An

orifice configuration which enables complete coverage during cleaning has been identified.

Orifice geometries likely to produce highly compact jets have been presented. Various orifice

configurations will be tested and the results presented in a future report.
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