72 research outputs found

    Quartz Cherenkov Counters for Fast Timing: QUARTIC

    Full text link
    We have developed particle detectors based on fused silica (quartz) Cherenkov radiators read out with micro-channel plate photomultipliers (MCP-PMTs) or silicon photomultipliers (SiPMs) for high precision timing (Sigma(t) about 10-15 ps). One application is to measure the times of small angle protons from exclusive reactions, e.g. p + p - p + H + p, at the Large Hadron Collider, LHC. They may also be used to measure directional particle fluxes close to external or stored beams. The detectors have small areas (square cm), but need to be active very close (a few mm) to the intense LHC beam, and so must be radiation hard and nearly edgeless. We present results of tests of detectors with quartz bars inclined at the Cherenkov angle, and with bars in the form of an "L" (with a 90 degree corner). We also describe a possible design for a fast timing hodoscope with elements of a few square mm.Comment: 24 pages, 14 figure

    Electrical Characterization of SiPM as a Function of Test Frequency and Temperature

    Full text link
    Silicon Photomultipliers (SiPM) represent a promising alternative to classical photomultipliers, for instance, for the detection of photons in high energy physics and medical physics. In the present work, electrical characterizations of test devices - manufactured by ST Microelectronics - are presented. SiPMs with an area of 3.5x3.5 micron^2 and a cell pitch of 54 micron were manufactured as arrays of 64x64 cells and exhibiting a fill factor of 31%. The capacitance of SiPMs was measured as a function of reverse bias voltage at frequencies ranging from from 20 Hz up to 1 MHz and temperatures from 300 K down to 85 K. While leakage currents were measured at temperatures from 400 K down to 85 K. Thus, the threshold voltage - i.e., voltage corresponding to that at which the multiplication regime for the leakage current begins - could be determined as a function of temperature. Finally, an electrical model suited to reproduce the dependence of the frequency dependence of capacitance is presented.Comment: To appear on the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo (Como, Italy), 3-7 October, 2011, to be published by World Scientific (Singapore

    The new generation of SPAD—Single-Photon Avalanche Diodes arrays

    Get PDF
    In the last years the single-photon detection with silicon devices has become an important goal. Here we present the performance of a new generation of single-photon avalanche diodes manufactured by ST-Microelectronics. The 5 × 5 array configuration has been also realized and the performances, in terms of crosstalk and common readout mode, have been investigated

    Application of Silicon Photomultipliers to Positron Emission Tomography

    Get PDF
    Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems

    A new pathogen transmission mechanism in the ocean: the case of sea otter exposure to the land-parasite Toxoplasma gondii.

    Get PDF
    Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of mortality for endangered southern sea otters (Enhydra lutris nereis), but the transmission mechanism is poorly understood. Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera) forests. It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp surfaces when encountering exopolymer substances (EPS) forming the sticky matrix of biofilms on kelp, and thus become available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix. To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles (TEP - the particulate form of EPS). On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as 'bycatch' and thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to marine wildlife and humans consuming biofilm-feeding invertebrates

    X-ray and electron response of 4H-SiC vertical interdigitated Schottky photodiodes

    No full text
    We report on the X-ray and electron performance of a low voltage reverse biased 4H-SiC vertical Schottky photodiode, based on the pinch-off surface effect, obtained by means of self-aligned Nickel Silicide (Ni2Si) interdigitated contacts. Although these photodiodes were original designed for UV detection their open Schottky contact is attractive for soft X-ray and low energy electron detection. The open electrode structure of the device allows the incident radiation to reach the active layer with minimal absorption. The photon counting spectroscopy response for soft X-rays is reported and compared to those predicted from a Monte Carlo model for SiC devices. We also show these devices can detect beta particles from 3H and 14C radioisotope sources with a combined energy range 1-156 keV. © 2012 IOP Publishing Ltd and Sissa Medialab srl
    corecore