120 research outputs found

    O Mito da Multitude, ou, Quem tem medo da Multidão

    Get PDF
    Hoje falamos de multitudes no lugar de multidões. Ou, para ser mais preciso, se queremos sugerir que os potenciais imanentes de um coletivo são politicamente progressivos, nós chamamos esse coletivo multitude, enquanto que se desejamos designá-los como regressivos, o nomeamos uma multidão. Multidões, supostamente, pertencem ao passado das democracias (neo)liberais do Norte global. Da mesma maneira, elas também marcam o presente de regimes nada ou insuficientemente liberais no Sul global. Para simplificar, em certa medida, as multidões são a matéria escura que puxa o sujeito liberal rumo ao seu passado, enquanto as multitudes ocupam o horizonte emergente das políticas pós-liberais. Tradução: Maria Fantinato, Elane Abreu, Diego Paleólog

    On the Im/Propriety of Brand Names

    Get PDF
    This paper asks what kind of modifications we might have to make to our conventional understandings of proper names to accommodate the im/propriety of brand names. On the basis of ethnographic research on a naming crisis at a Mumbai advertising agency, I suggest that the classic anthropological notion of ‘participation’ (as opposed to reference) allows us to consider the play between baptism and the mimetic activation of virtual potentials that characterizes the public life of brand names. I argue for moving beyond the distinction between ‘artificial’ and ‘real’ proper names sustained by the theory of commodity fetishism, and propose instead that the supposed artificiality of brand identities has come to operate as an alibi for the unsteady authenticity of personal identities

    Mounting and Alignment of IXO Mirror Segments

    Get PDF
    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes

    Precise Alignment and Permanent Mounting of Thin and Lightweight X-ray Segments

    Get PDF
    To provide observations to support current research efforts in high energy astrophysics. future X-ray telescope designs must provide matching or better angular resolution while significantly increasing the total collecting area. In such a design the permanent mounting of thin and lightweight segments is critical to the overall performance of the complete X-ray optic assembly. The thin and lightweight segments used in the assemhly of the modules are desigued to maintain and/or exceed the resolution of existing X-ray telescopes while providing a substantial increase in collecting area. Such thin and delicate X-ray segments are easily distorted and yet must be aligned to the arcsecond level and retain accurate alignment for many years. The Next Generation X-ray Optic (NGXO) group at NASA Goddard Space Flight Center has designed, assembled. and implemented new hardware and procedures mth the short term goal of aligning three pairs of X-ray segments in a technology demonstration module while maintaining 10 arcsec alignment through environmental testing as part of the eventual design and construction of a full sized module capable of housing hundreds of X-ray segments. The recent attempts at multiple segment pair alignment and permanent mounting is described along with an overview of the procedure used. A look into what the next year mll bring for the alignment and permanent segment mounting effort illustrates some of the challenges left to overcome before an attempt to populate a full sized module can begin

    Astronomical X-Ray Optics Using Mono-Crystalline Silicon: High Resolution, Light Weight, and Low Cost

    Get PDF
    X-ray astronomy critically depends on X-ray optics. The capability of an X-ray telescope is largelydetermined by the point-spread function (PSF) and the photon-collection area of its mirrors, the same astelescopes in other wavelength bands. Since an X-ray telescope must be operated above the atmosphere inspace and that X-rays reflect only at grazing incidence, X-ray mirrors must be both lightweight and thin, bothof which add significant technical and engineering challenge to making an X-ray telescope. In this paper wereport our effort at NASA Goddard Space Flight Center (GSFC) of developing an approach to making an Xraymirror assembly that can be significantly better than the mirror assembly currently flying on the ChandraX-ray Observatory in each of the three aspects: PSF, effective area per unit mass, and production cost per uniteffective area. Our approach is based on the precision polishing of mono-crystalline silicon to fabricate thinand lightweight X-ray mirrors of the highest figure quality and micro-roughness, therefore, having thepotential of achieving diffraction-limited X-ray optics. When successfully developed, this approach will makeimplementable in the 2020s and 2030s many X-ray astronomical missions that are currently on the drawingboard, including sounding rocket flights such as OGRE, Explorer class missions such as STAR-X andFORCE, Probe class missions such as AXIS, TAP, and HEX-P, as well as large missions such as Lynx

    Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

    Get PDF
    Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays

    Optical design of the Off-plane Grating Rocket Experiment

    Get PDF
    The Off-plane Grating Rocket Experiment (OGRE) is a soft X-ray spectroscopy suborbital rocket payload scheduled for launch in Q3 2020 from Wallops Flight Facility. The payload will serve as a testbed for several key technologies which can help achieve the desired performance increases for the next generation of X-ray spectrographs and other space-based missions: monocrystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center, reflection gratings manufactured at The Pennsylvania State University, and electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these three technologies, OGRE hopes to obtain the highest-resolution on-sky soft X-ray spectrum to date. We discuss the optical design of the OGRE payload

    The Off-plane Grating Rocket Experiment (OGRE) system overview

    Get PDF
    The Off-plane Grating Rocket Experiment (OGRE) is a sub-orbital rocket payload that will make the highest spectral resolution astronomical observation of the soft X-ray Universe to date. Capella, OGRE’s science target, has a well-defined line emission spectrum and is frequently used as a calibration source for X-ray observatories such as Chandra. This makes Capella an excellent target to test the technologies on OGRE, many of which have not previously flown. Through the use of state-of-the-art X-ray optics, co-aligned arrays of off-plane reflection gratings, and an X-ray camera based around four Electron Multiplying CCDs, OGRE will act as a proving ground for next generation X-ray spectrometers

    Aligning, Bonding, and Testing Mirrors for Lightweight X-ray Telescopes

    Get PDF
    High-resolution, high throughput optics for x-ray astronomy entails fabrication of well-formed mirror segments and their integration with arc-second precision. In this paper, we address issues of aligning and bonding thin glass mirrors with negligible additional distortion. Stability of the bonded mirrors and the curing of epoxy used in bonding them were tested extensively. We present results from tests of bonding mirrors onto experimental modules, and on the stability of the bonded mirrors tested in x-ray. These results demonstrate the fundamental validity of the methods used in integrating mirrors into telescope module, and reveal the areas for further investigation. The alignment and integration methods are applicable to the astronomical mission concept such as STAR-X, the Survey and Time-domain Astronomical Research Explorer
    corecore