24 research outputs found
SK-channel activation alters peripheral metabolic pathways in mice, but not lipopolysaccharide-induced fever or inflammation
PURPOSE: Previously, we have shown that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine), a pharmacological small-conductance calcium-activated potassium (SK)âchannel positive modulator, antagonizes lipopolysaccharide (LPS)-induced cytokine expression in microglial cells. Here, we aimed to test its therapeutic potential for brain-controlled sickness symptoms, brain inflammatory response during LPS-induced systemic inflammation, and peripheral metabolic pathways in mice. METHODS: Mice were pretreated with CyPPA (15 mg/kg IP) 24 hours before and simultaneously with LPS stimulation (2.5 mg/kg IP), and the sickness response was recorded by a telemetric system for 24 hours. A second cohort of mice were euthanized 2 hours after CyPPA or solvent treatment to assess underlying CyPPA-induced mechanisms. Brain, blood, and liver samples were analyzed for inflammatory mediators or nucleotide concentrations using immunohistochemistry, real-time PCR and Western blot, or HPLC. Moreover, we investigated CyPPA-induced changes of UCP1 expression in brown adipose tissue (BAT)âexplant cultures. RESULTS: CyPPA treatment did not affect LPS-induced fever, anorexia, adipsia, or expression profiles of inflammatory mediators in the hypothalamus or plasma or microglial reactivity to LPS (CD11b staining and CD68 mRNA expression). However, CyPPA alone induced a rise in core body temperature linked to heat production via altered metabolic pathways like reduced levels of adenosine, increased protein content, and increased UCP1 expression in BAT-explant cultures, but no alteration in ATP/ADP concentrations in the liver. CyPPA treatment was accompanied by altered pathways, including NFÎșB signaling, in the hypothalamus and cortex, while circulating cytokines remained unaltered. CONCLUSION: Overall, while CyPPA has promise as a treatment strategy, in particular according to results from in vitro experiments, we did not reveal anti-inflammatory effects during severe LPS-induced systemic inflammation. Interestingly, we found that CyPPA alters metabolic pathways inducing short hyperthermia, most likely due to increased energy turnover in the liver and heat production in BAT
The Oesophageal Squamous Cell Carcinoma Cell Line COLO-680N Fails to Support Sustained Cryptosporidium parvum Proliferation
Cryptosporidium parvum is an important diarrhoea-associated protozoan, which is difficult to propagate in vitro. In 2017, a report described a continuous culture of C. parvum Moredun strain, in the oesophageal squamous cell carcinoma cell line COLO-680N, as an easy-to-use system for C. parvum propagation and continuous production of oocysts. Here, we report thatâusing the Köllitsch strain of C. parvumâeven though COLO-680N cells, indeed, allowed parasite invasion and early asexual parasite replication, C. parvum proliferation decreased after the second day post infection. Considering recurring studies, reporting on successful production of newly generated Cryptosporidium oocysts in the past, and the subsequent replication failure by other research groups, the current data stand as a reminder of the importance of reproducibility of in vitro systems in cryptosporidiosis research. This is of special importance since it will only be possible to develop promising strategies to fight cryptosporidiosis and its ominous consequences for both human and animal health by a continuous and reliable methodological progress
First Metabolic Insights into Ex Vivo Cryptosporidium parvum-Infected Bovine Small Intestinal Explants Studied under Physioxic Conditions
The apicomplexan Cryptosporidium parvum causes thousands of human deaths yearly. Since bovines represent the most important reservoir of C. parvum, the analysis of infected bovine small intestinal (BSI) explants cultured under physioxia offers a realistic model to study C. parvumâhost cellâmicrobiome interactions. Here, C. parvum-infected BSI explants and primary bovine small intestinal epithelial cells were analysed for parasite development and metabolic reactions. Metabolic conversion rates in supernatants of BSI explants were measured after infection, documenting an immediate parasite-driven metabolic interference. Given that oxygen concentrations affect cellular metabolism, measurements were performed at both 5% O2 (physiological intestinal conditions) and 21% O2 (commonly used, hyperoxic lab conditions). Overall, analyses of C. parvum-infected BSI explants revealed a downregulation of conversion rates of key metabolitesâsuch as glucose, lactate, pyruvate, alanine, and aspartateâat 3 hpi, followed by a rapid increase in the same conversion rates at 6 hpi. Moreover, PCA revealed physioxia as a driving factor of metabolic responses in C. parvum-infected BSI explants. Overall, the ex vivo model described here may allow scientists to address pending questions as to how host cellâmicrobiome alliances influence intestinal epithelial integrity and support the development of protective intestinal immune reactions against C. parvum infections in a realistic scenario under physioxic conditions
Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer
Metabolic reprogramming in cancer targets glutamine metabolism as a key mechanism to provide energy,
biosynthetic precursors and redox requirements to allow the massive proliferation of tumor cells. Glutamine is
also a signaling molecule involved in essential pathways regulated by oncogenes and tumor suppressor factors.
Glutaminase isoenzymes are critical proteins to control glutaminolysis, a key metabolic pathway for cell proliferation
and survival that directs neoplasmsâ fate. Adaptive glutamine metabolism can be altered by different
metabolic therapies, including the use of specific allosteric inhibitors of glutaminase that can evoke synergistic
effects for the therapy of cancer patients. We also review other clinical applications of in vivo assessment of
glutaminolysis by metabolomic approaches, including diagnosis and monitoring of cancer
Metabolic Signatures of Cryptosporidium parvum-Infected HCT-8 Cells and Impact of Selected Metabolic Inhibitors on C. parvum Infection under Physioxia and Hyperoxia
Cryptosporidium parvum is an apicomplexan zoonotic parasite recognized as the second leading-cause of diarrhoea-induced mortality in children. In contrast to other apicomplexans, C. parvum has minimalistic metabolic capacities which are almost exclusively based on glycolysis. Consequently, C. parvum is highly dependent on its host cell metabolism. In vivo (within the intestine) infected epithelial host cells are typically exposed to low oxygen pressure (1â11% O2, termed physioxia). Here, we comparatively analyzed the metabolic signatures of C. parvum-infected HCT-8 cells cultured under both, hyperoxia (21% O2), representing the standard oxygen condition used in most experimental settings, and physioxia (5% O2), to be closer to the in vivo situation. The most pronounced effect of C. parvum infection on host cell metabolism was, on one side, an increase in glucose and glutamine uptake, and on the other side, an increase in lactate release. When cultured in a glutamine-deficient medium, C. parvum infection led to a massive increase in glucose consumption and lactate production. Together, these results point to the important role of both glycolysis and glutaminolysis during C. parvum intracellular replication. Referring to obtained metabolic signatures, we targeted glycolysis as well as glutaminolysis in C. parvum-infected host cells by using the inhibitors lonidamine [inhibitor of hexokinase, mitochondrial carrier protein (MCP) and monocarboxylate transporters (MCT) 1, 2, 4], galloflavin (lactate dehydrogenase inhibitor), syrosingopine (MCT1- and MCT4 inhibitor) and compound 968 (glutaminase inhibitor) under hyperoxic and physioxic conditions. In line with metabolic signatures, all inhibitors significantly reduced parasite replication under both oxygen conditions, thereby proving both energy-related metabolic pathways, glycolysis and glutaminolysis, but also lactate export mechanisms via MCTs as pivotal for C. parvum under in vivo physioxic conditions of mammals
Posttranslational Modifications of Pyruvate Kinase M2: Tweaks that Benefit Cancer
Cancer cells rewire metabolism to meet biosynthetic and energetic demands. The characteristic increase in glycolysis, i.e., Warburg effect, now considered as a hallmark, supports cancer in various ways. To attain such metabolic reshuffle, cancer cells preferentially re-express the M2 isoform of pyruvate kinase (PKM2, M2-PK) and alter its quaternary structure to generate less-active PKM2 dimers. The relatively inactive dimers cause the accumulation of glycolytic intermediates that are redirected into anabolic pathways. In addition, dimeric PKM2 also benefits cancer cells through various non-glycolytic moonlight functions, such as gene transcription, protein kinase activity, and redox balance. A large body of data have shown that several distinct posttranslation modifications (PTMs) regulate PKM2 in a way that benefits cancer growth, e.g., formation of PKM2 dimers. This review discusses the recent advancements in our understanding of various PTMs and the benefits they impart to the sustenance of cancer. Understanding the PTMs in PKM2 is crucial to assess their therapeutic potential and to design novel anticancer strategies
Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer.
Metabolic reprogramming in cancer targets glutamine metabolism as a key mechanism to provide energy, biosynthetic precursors and redox requirements to allow the massive proliferation of tumor cells. Glutamine is also a signaling molecule involved in essential pathways regulated by oncogenes and tumor suppressor factors. Glutaminase isoenzymes are critical proteins to control glutaminolysis, a key metabolic pathway for cell proliferation and survival that directs neoplasms' fate. Adaptive glutamine metabolism can be altered by different metabolic therapies, including the use of specific allosteric inhibitors of glutaminase that can evoke synergistic effects for the therapy of cancer patients. We also review other clinical applications of in vivo assessment of glutaminolysis by metabolomic approaches, including diagnosis and monitoring of cancer