731 research outputs found

    The use of Minimal Spanning Tree to characterize the 2D cluster galaxy distribution

    Get PDF
    We use the Minimal Spanning Tree to characterize the aggregation level of given sets of points. We test 3 distances based on the histogram of the MST edges to discriminate between the distributions. We calibrate the method by using artificial sets following Poisson, King or NFW distributions. The distance using the mean, the dispersion and the skewness of the histogram of MST edges provides the more efficient results. We apply this distance to a subsample of the ENACS clusters and we show that the bright galaxies are significantly more aggregated than the faint ones. The contamination provided by uniformly distributed field galaxies is neglectible. On the other hand, we show that the presence of clustered groups on the same cluster line of sight masked the variation of the distance with the considered magnitude.Comment: 9 pages, 7 postscript figures, LateX A\{&}A, accepted in A\{&}

    Group analysis in the SSRS2 catalog

    Get PDF
    We present an automated method to detect populations of groups in galaxy redshift catalogs. This method uses both analysis of the redshift distribution along lines of sight in fixed cells to detect elementary structures and a friend-of-friend algorithm to merge these elementary structures into physical structures. We apply this method to the SSRS2 galaxy redshift catalog. The groups detected with our method are similar to group catalogs detected with pure friend-of-friend algorithms. They have similar mass distribution, similar abundance versus redshift, similar 2-point correlation function and the same redshift completeness limit, close to 5000 km/s. If instead of SSRS2, we use catalogs of new generation, it would lead to a completeness limit of z∌\sim0.7. We model the luminosity function for nearby galaxy groups by a Schechter function with parameters M*=(-19.99+/-0.36)+5logh and alpha=-1.46 +/- 0.17 to compute the mass to light ratio. The median value of the mass to light ratio is 360 h M/L and we deduce a relation between mass to light ratio and velocity dispersion sigma (M/L=3.79 +/- 0.64)sigma -(294 +/- 570)). The more massive the group, the higher the mass to light ratio, and therefore, the larger the amount of dark matter inside the group. Another explanation is a significant stripping of the gas of the galaxies in massive groups as opposed to low mass groups. This extends to groups of galaxies the mild tendency already detected for rich clusters of galaxies. Finally, we detect a barely significant fundamental plane for these groups but much less narrow than for clusters of galaxies.Comment: 8 pages, 5 figures, accepted in A&A, shortened abstrac

    Cluster luminosity function and n^th ranked magnitude as a distance indicator

    Full text link
    We define here a standard candle to determine the distance of clusters of galaxies and to investigate their peculiar velocities by using the n^{th} rank galaxy (magnitude mn_n). We address the question of the universality of the luminosity function for a sample of 28 rich clusters of galaxies (cz≃20000km/scz \simeq 20000 km/s) in order to model the influence on mnm_n of cluster richness. This luminosity function is found to be universal and the fit of a Schechter profile gives α=−1.50±0.11\alpha = -1.50 \pm 0.11 and Mbj∗=−19.91±0.21M_{bj}* = -19.91 \pm 0.21 in the range [-21,-17]. The uncorrected distance indicator mnm_n is more efficient for the first ranks n. With n=5, we have a dispersion of 0.61 magnitude for the (mn_n,5log(cz)) relation. When we correct for the richness effect and subtract the background galaxies we reduce the uncertainty to 0.21 magnitude with n=15. Simulations show that a large part of this dispersion originates from the intrinsic scatter of the standard candle itself. These provide upper bounds on the amplitude σv\sigma_v of cluster radial peculiar motions. At a confidence level of 90%, the dispersion is 0.13 magnitude and σv\sigma_v is limited to 1200 km/s for our sample of clusters.Comment: 9 pages, 7 postscript figures, LateX A&A, accepted in A&

    Coma cluster object populations down to M_R~-9.5

    Full text link
    This study follows a recent analysis of the galaxy luminosity functions and colour-magnitude red sequences in the Coma cluster (Adami et al. 2007). We analyze here the distribution of very faint galaxies and globular clusters in an east-west strip of ∌42×7\sim 42 \times 7 arcmin2^2 crossing the Coma cluster center (hereafter the CS strip) down to the unprecedented faint absolute magnitude of MR∌−9.5_R \sim -9.5. This work is based on deep images obtained at the CFHT with the CFH12K camera in the B, R, and I bands. The analysis shows that the observed properties strongly depend on the environment, and thus on the cluster history. When the CS is divided into four regions, the westernmost region appears poorly populated, while the regions around the brightest galaxies NGC 4874 and NGC 4889 (NGC 4874 and NGC 4889 being masked) are dominated by faint blue galaxies. They show a faint luminosity function slope of -2, very significantly different from the field estimates. Results are discussed in the framework of galaxy destruction (which can explain part of the very faint galaxy population) and of structures infalling on to Coma.Comment: To be published in A&

    Unveiling hidden structures in the Coma cluster

    Get PDF
    We have assembled a large data-set of 613 galaxy redshifts in the Coma cluster, the largest presently available for a cluster of galaxies. We have defined a sample of cluster members complete to b26.5=20.0_{26.5}=20.0, using a membership criterion based on the galaxy velocity, when available, or on the galaxy magnitude and colour, otherwise. Such a data set allows us to define nearly complete samples within a region of 1~\Mpc\ radius, with a sufficient number of galaxies per sample to make statistical analyses possible. Using this sample and the {\em ROSAT} PSPC X--ray image of the cluster, we have re-analyzed the structure and kinematics of Coma, by applying the wavelet and adaptive kernel techniques. A striking coincidence of features is found in the distributions of galaxies and hot intracluster gas. The two central dominant galaxies, NGC4874 and NGC4889, are surrounded by two galaxy groups, mostly populated with galaxies brighter than b26.5=17_{26.5}=17 and well separated in velocity space. On the contrary, the fainter galaxies tend to form a single smooth structure with a central peak coinciding in position with a secondary peak detected in X--rays, and located between the two dominant galaxies; we suggest to identify this structure with the main body of the Coma cluster. A continuous velocity gradient is found in the central distribution of these faint galaxies, a probable signature of tidal interactions rather than rotation. There is evidence for a bound population of bright galaxies around other brightest cluster members. Altogether, the Coma cluster structure seems to be better traced by the faint galaxy population, the bright galaxies being located in subclusters. We discuss this evidence in terms of an ongoing accretion of groups onto the cluster.Comment: to appear in A&A, 19 pages, uuencoded gzipped postscript fil

    A Turn-over in the Galaxy Luminosity Function of the Coma Cluster Core?

    Get PDF
    Our previous study of the faint end (R≀\leq21.5) of the galaxy luminosity function (GLF) was based on spectroscopic data in a small region near the Coma cluster center. In this previous study Adami et al. (1998) suggested, with moderate statistical significance, that the number of galaxies actually belonging to the cluster was much smaller than expected. This led us to increase our spectroscopic sample. Here, we have improved the statistical significance of the results of the Coma GLF faint end study (R≀\leq22.5) by using a sample of 85 redshifts. This includes both new spectroscopic data and a literature compilation. The relatively small number of faint galaxies belonging to Coma that was suggested by Adami et al. (1998) and Secker et al. (1998) has been confirmed with these new observations. We also confirm that the color-magnitude relation is not well suited for finding the galaxies inside the Coma cluster core, close to the center at magnitudes fainter than R∌\sim19. We show that there is an enhancement in the Coma line of sight of field galaxies compared to classical field counts. This can be explained by the contribution of groups and of a distant z∌0.5z\sim 0.5 cluster along the line of sight. The result is that the Coma GLF appears to turn-over or at least to become flat for the faint galaxies. We suggest that this is due to environmental effects.Comment: 8 pages, 6 postscript figures, accepted in A&A, new table 1, updated figure

    On the galaxy luminosity function in the central regions of the Coma cluster

    Get PDF
    We have obtained new redshifts for 265 objects in the central 48~×\times~25~arcmin2^2 region of the Coma cluster. When supplemented with literature data, our redshift sample is 95~\% complete up to a magnitude b26.5_{26.5}=18.0 (the magnitudes are taken from the photometric sample of Godwin et al. 1983). Using redshift-confirmed membership for 205 galaxies, and the location in the colour-magnitude diagram for another 91 galaxies, we have built a sample of cluster members which is complete up to b26.5_{26.5}=20.0. We show that the Coma cluster luminosity function cannot be adequately fitted by a single Schechter (1976) function, because of a dip in the magnitude distribution at b26.5_{26.5}∌\sim17. The superposition of an Erlang (or a Gauss) and a Schechter function provides a significantly better fit. We compare the luminosity function of Coma to those of other clusters, and of the field. Luminosity functions for rich clusters look similar, with a maximum at Mb≃−19.5+5×log⁥h50M_{b} \simeq -19.5 + 5 \times \log h_{50}, while the Virgo and the field luminosity functions show a nearly monotonic behaviour. These differences may be produced by physical processes related to the environment which affect the luminosities of a certain class of cluster galaxies.Comment: 7 pages, uuencoded postscript file (figures included) Accepted for publication on A&
    • 

    corecore