457 research outputs found

    Effect of Charge on the Deposition of Electrostatically Charged Inhalable Aerosol in Lung Model

    Get PDF
    Inhalable drugs are widely used for treating lung diseases such as asthma, emphysema, and cystic fibrosis. The aerosol particles in these inhalable drugs may be charged electrostatically. The deposition of these inhaled therapeutic aerosol particles in the different regions of the lung depends on the particle aerodynamic diameter, electrostatic charge distribution, particulate number density, breathing rate, aerodynamics of the lung, ambient temperature, and relative humidity (RH). The primary mechanisms for lung deposition of inhaled particles are impaction, gravitational settling, diffusion, interception, and electrostatic attraction. To simulate lung deposition, electrostatically charged aerosol particles are introduced through a throat section into a glass bead lung model. The E-SPART analyzer was used to measure aerosol deposition as a function of the particle charge and size. Experiments were carried out to determine the increase in deposition efficiency as a function of the net charge-to-mass ratio (Q/M) of aerosol particles. Using a fairly monodisperse aerosol of 5.0 um count median aerodynamic diameter, it was found that the total deposition efficiency increased from 54% to 91% when Q/M increased from 0.5 to 9.67 |muC/g. The data show that enhanced delivery of the therapeutic aerosol in the lung can be achieved by controlling the electrostatic charge on the inhaled aerosol particles

    Reduction of Dendrite Formations to Improve the Appearance of the Powder Cured Films for Automotive Industry

    Get PDF
    The appearance of powder-coated films is dependent upon powder chemistry and spraying parameters. One of the most important physical factors controlling the powder film appearance is the microdeposition of the powder particles on the grounded substrate. During the electrostatic deposition of powder, the formation of dendrites and agglomerates was observed; these formations have an adverse effect on the final film appearance and their elimination may result in smoother and glossier films. Dendrites are generated due to bipolar charging and inter-particulate electrostatic attractive forces. The corona charging technique is mostly used in industrial powder coating applications. At low corona voltages (- 40 to - 60 kV) a greater degree of bipolar charging was observed compared to that at higher voltages (- 80 to - 100 kV). At the higher voltages, the increase n number of ions produces a more unipolar charging and higher charge-to-mass ratios. As the film builds up, the powder transfer efficiency decreases as the repulsion forces between oncoming charged particles and the already deposited powder layer increase. By controlling the deposition patterns, the final film appearance can be improved. The smoothest films were obtained when the voltage was ramped from - 60 to - 100 kV. Another method to reduce dendrite formations was to deposit powder particles charged unipolarly by first separating them from the oppositely charged ones by using a charge separator

    Electrostatic Microencapsulation of Composite Particulate Materials for Manufacturing and Environmental Applications

    Get PDF
    Electrostatic microencapsulation is a dry coating process where two powders, one containing the fines and the other relatively larger particles, are separately dispersed in air and pre-charged with opposite polarity, using corona charging for electrostatic coagulation. These oppositely charged core and guest particles experience attractive electrostatic forces and generate composite particles. Preliminary experiments of electrostatic microencapsulation were performed using Anionic Exchange Resin (AG 1-X8) as the host particle and Red Toner (Omega 4000) as the guest particles. An electrostatic microencapsulation tower has been designed for generation of composite particles using particles of different particle size distribution

    Twenty-First Century Research Needs in Electrostatic Processes Applied to Industry and Medicine

    Get PDF
    From the early century Nobel Prize winning (1923) experiments with charged oil droplets, resulting in the discovery of the elementary electronic charge by Robert Millikan, to the early 21st century Nobel Prize (2002) awarded to John Fenn for his invention of electrospray ionization mass spectroscopy and its applications to proteomics, electrostatic processes have been successfully applied to many areas of industry and medicine. Generation, transport, deposition, separation, analysis, and control of charged particles involved in the four states of matter: solid, liquid, gas, and plasma are of interest in many industrial and biomedical processes. In this paper, we briefly discuss some of the applications and research needs involving charged particles in industrial and medical applications including: (1) Generation and deposition of unipolarly charged dry powder without the presence of ions or excessive ozone, (2) Control of tribocharging process for consistent and reliable charging, (3) Thin film (less than 25 micrometers) powder coating and Powder coating on insulative surfaces, (4) Fluidization and dispersion of fine powders, (5) Mitigation of Mars dust, (6) Effect of particle charge on the lung deposition of inhaled medical aerosols, (7) Nanoparticle deposition, and (8) Plasma/Corona discharge processes. A brief discussion on the measurements of charged particles and suggestions for research needs are also included

    Study of in-medium ω\omega meson properties in Ap, pA and AA collisions

    Full text link
    We propose to investigate the in-medium properties of vector ω\omega mesons at the normal nuclear density in Ap(pA) collisions and at higher density in AA collisions at the ITEP accelerator facility TWAC. Using of the inverse Ap kinematics will permit us to study the ω\omega meson production in a wide momentum interval included the not yet explored range of small meson momenta relative to the projectile nuclei where the mass modification effect in nuclear matter is expected to be the strongest. Momentum dependence of the in-medium ω\omega meson width will be studied in the traditional pA kinematics. We intend to use the electromagnetic calorimeter for reconstruction of the ω\omega meson invariant mass by detecting photons from the ωπ0γ3γ\omega \to \pi^{0}\gamma \to 3\gamma decay. The model calculations and simulations with RQMD generator show feasibility of the proposed experiment. Available now intensity of the ion beams provides a possibility to collect large statistics and make decisive conclusion about the ω\omega meson properties at density of normal nuclei. At the second stage of the investigation the ω\omega meson properties will be studied in AA collisions at higher density. Interpretation of these measurements will be based on the results obtained in Ap(pA) interactions. Further investigation of the in-medium properties of light unflavored and charmed mesons can be performed at ITEP and at GSI(FAIR) where higher ion energies will be accessible in near future.Comment: 26 pages, 10 figures, 2 table

    On thermodynamics second law in the modified Gauss Bonnet gravity

    Full text link
    The second law and the generalized second law of thermodynamics in cosmology in the framework of the modified Gauss-Bonnet theory of gravity are investigated. The conditions upon which these laws hold are derived and discussed.Comment: 9pages, typos corrected, references adde

    Generation of Bianchi type V cosmological models with varying Λ\Lambda-term

    Full text link
    Bianchi type V perfect fluid cosmological models are investigated with cosmological term Λ\Lambda varying with time. Using a generation technique (Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical aspects of the models are also discussed.Comment: 16 pages, 3 figures, submitted to CJ

    Study of Thermodynamic Quantities in Generalized Gravity Theories

    Full text link
    In this work, we have studied the thermodynamic quantities like temperature of the universe, heat capacity and squared speed of sound in generalized gravity theories like Brans-Dicke, Horˇ\check{\text r}ava-Lifshitz and f(R)f(R) gravities. We have considered the universe filled with dark matter and dark energy. Also we have considered the equation of state parameters for open, closed and flat models. We have observed that in all cases the equation of state behaves like quintessence. The temperature and heat capacity of the universe are found to decrease with the expansion of the universe in all cases. In Brans-Dicke and f(R)f(R) gravity theories the squared speed of sound is found to exhibit increasing behavior for open, closed and flat models and in Horˇ\check{\text r}ava-Lifshitz gravity theory it is found to exhibit decreasing behavior for open and closed models with the evolution of the universe. However, for flat universe, the squared speed of sound remains constant in Horˇ\check{\text r}ava-Lifshitz gravity.Comment: 15 pages, 12 figure

    Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes

    Get PDF
    Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime
    corecore