11 research outputs found

    Acoustic and relaxation processes in supercooled o-ter-phenyl by optical-heterodyne transient grating experiment

    Full text link
    The dynamics of the fragile glass-forming o-ter-phenyl is investigated by time-resolved transient grating experiment with an heterodyne detection technique in a wide temperature range. We investigated the dynamics processes of this glass-former over more then 6 decades in time with an excellent signal/noise. Acoustic, structural and thermal relaxations have been clearly identify and measured in a time-frequency window not covered by previous spectroscopic investigations. A detailed comparison with the density response function, calculated on the basis of generalized hydrodynamics model, has been worked out

    Imaging phonon eigenstates and elucidating the energy storage characteristics of a honeycomb-lattice phononic crystal cavity

    No full text
    We extend gigahertz time-domain imaging to a wideband investigation of the eigenstates of a phononic crystal cavity. Using omnidirectionally excited phonon wave vectors, we implement an ultrafast technique to experimentally probe the two-dimensional acoustic field inside and outside a hexagonal cavity in a honeycomb-lattice phononic crystal formed in a microscopic crystalline silicon slab, thereby revealing the confinement and mode volumes of phonon eigenstates—some of which are clearly hexapole in character—lying both inside and outside the phononic-crystal band gap. This allows us to obtain a quantitative measure of the spatial acoustic energy storage characteristics of a phononic crystal cavity. We also introduce a numerical approach involving toneburst excitation and the monitoring of the acoustic energy decay together with the integral of the Poynting vector to calculate the Q factor of the principal in-gap eigenmode, showing it to be limited by ultrasonic attenuation rather than by phonon leakage to the surrounding region
    corecore