211 research outputs found

    Fe-based superconductors: unity or diversity?

    Full text link
    Does the high temperature superconductivity observed in the newly discovered iron-pnictide materials represent another example of the same essential physics responsible for superconductivity in the cuprates, or does it embody a new mechanism?Comment: Some minor errors in the figure and in the reference in the published version are corrected. 2 pages, 2 figure

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity

    Integer and half-integer flux-quantum transitions in a niobium/iron-pnictide loop

    Full text link
    The recent discovery of iron-based superconductors challenges the existing paradigm of high-temperature superconductivity. Owing to their unusual multi-orbital band structure, magnetism, and electron correlation, theories propose a unique sign reversed s-wave pairing state, with the order parameter changing sign between the electron and hole Fermi pockets. However, because of the complex Fermi surface topology and material related issues, the predicted sign reversal remains unconfirmed. Here we report a novel phase-sensitive technique for probing unconventional pairing symmetry in the polycrystalline iron-pnictides. Through the observation of both integer and half-integer flux-quantum transitions in composite niobium/iron-pnictide loops, we provide the first phase-sensitive evidence of the sign change of the order parameter in NdFeAsO0.88F0.12, lending strong support for microscopic models predicting unconventional s-wave pairing symmetry. These findings have important implications on the mechanism of pnictide superconductivity, and lay the groundwork for future studies of new physics arising from the exotic order in the FeAs-based superconductors.Comment: 23 pages, including 4 figures and supplementary informatio

    Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat

    Full text link
    The symmetry and structure of the superconducting gap in the Fe-based superconductors are the central issue for understanding these novel materials. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly-constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ("nodes"). Theoretical models also vary, suggesting that the absence or presence of the nodes depends quantitatively on the model parameters. An opinion that has gained substantial currency is that the gap structure, unlike all other known superconductors, including cuprates, may be different in different compounds within the same family. A unique method for addressing this issue, one of the very few methods that are bulk and angle-resolved, calls for measuring the electronic specific heat in a rotating magnetic field, as a function of field orientation with respect to the crystallographic axes. In this Communication we present the first such measurement for an Fe-based high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction, which allowed us to identify the locations of the gap minima (or nodes) on the Fermi surface. Our results are consistent with the expectations of an extended s-wave model with a significant gap anisotropy on the electron pockets and the gap minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    Electronic correlations in the iron pnictides

    Full text link
    In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electron's kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.Comment: 10 page

    The mean free path for electron conduction in metallic fullerenes

    Full text link
    We calculate the electrical resistivity due to electron-phonon scattering for a model of A3C60 (A= K, Rb), using an essentially exact quantum Monte-Carlo calculation. In agreement with experiment, we obtain exceptionally large metallic resistivities at large temperatures T. This illustrates that the apparent mean free path can be much shorter than the separation of the molecules. An interpretation of this result is given. The calculation also explains the linear behavior in T at small T.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Electric-field controlled spin reversal in a quantum dot with ferromagnetic contacts

    Get PDF
    Manipulation of the spin-states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin-filters, spin-transistors and single-spin memory as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin-polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the properties of the quantum dot become directly spin-dependent and it has been demonstrated that the ferromagnetic electrodes induce a local exchange-field which polarizes the localized spin in the absence of any external fields. Here we report on the experimental realization of this tunneling-induced spin-splitting in a carbon nanotube quantum dot coupled to ferromagnetic nickel-electrodes. We study the intermediate coupling regime in which single-electron states remain well defined, but with sufficiently good tunnel-contacts to give rise to a sizable exchange-field. Since charge transport in this regime is dominated by the Kondo-effect, we can utilize this sharp many-body resonance to read off the local spin-polarization from the measured bias-spectroscopy. We show that the exchange-field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo-resonance, and we demonstrate that the exchange-field itself, and hence the local spin-polarization, can be tuned and reversed merely by tuning the gate-voltage. This demonstrates a very direct electrical control over the spin-state of a quantum dot which, in contrast to an applied magnetic field, allows for rapid spin-reversal with a very localized addressing.Comment: 19 pages, 11 figure

    Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides

    Full text link
    The iron pnictide and chalcogenide compounds are a subject of intensive investigations due to their high temperature superconductivity.\cite{a-LaFeAsO} They all share the same structure, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and Tc_c. Many theoretical techniques have been applied to individual compounds but no consistent description of the trends is available \cite{np-review}. We carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. We show that the nature of both states is well described by our method and the trends in all the calculated physical properties such as the ordered moments, effective masses and Fermi surfaces are in good agreement with experiments across the compounds. The variation of these properties can be traced to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results provide a natural explanation of the strongly Fermi surface dependent superconducting gaps observed in experiments\cite{Ding}. We propose a specific optimization of the crystal structure to look for higher Tc_c superconductors.Comment: 5 pages, 3 figures with a 5-page supplementary materia

    Advantageous grain boundaries in iron pnictide superconductors

    Get PDF
    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries-the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here, we report that High critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (thetaGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (> 1 MA/cm2) and nearly constant up to a critical angle thetac of ~9o, which is substantially larger than the thetac of ~5o for YBCO. Even at thetaGB > thetac, the decay of JcBGB was much smaller than that of YBCO.Comment: to appear in Nature Communication
    • …
    corecore