391 research outputs found

    Impact of probiotic administration on serum C-reactive protein concentrations: systematic review and meta-analysis of randomized control trials

    Get PDF
    We conducted this systematic review and meta-analysis of prospective studies to determine the effect of probiotic administration on serum C-reactive protein (CRP) concentrations. We searched PubMed-Medline, Web of Science, the Cochrane, and Google Scholar databases (until May 2016) to identify prospective studies evaluating the impact of probiotic administration on CRP. We used a random effects models and generic inverse variance methods to synthesize quantitative data, followed by a leave-one-out method for sensitivity analysis. The systematic review registration number was: CRD42016039457. From a total of 425 entries identified via searches, 20 studies were included in the final analysis. The meta-analysis indicated a significant reduction in serum CRP following probiotic administration with a weighted mean difference (WMD) of -1.35 mg/L, (95% confidence interval (CI) -2.15 to -0.55, I² 65.1%). The WMDs for interleukin 10 (IL10) was -1.65 pg/dL, (95% CI -3.45 to 0.14, I² 3.1%), and -0.45 pg/mL, (95% CI -1.38 to 0.48, I² 10.2%) for tumor necrosis factor alpha (TNF-α). These findings were robust in sensitivity analyses. This meta-analysis suggests that probiotic administration may significantly reduce serum CRP while having no significant effect on serum IL10 and TNF-α

    The effect of ginger supplementation on serum C-reactive protein, lipid profile and glycaemia: a systematic review and meta-analysis

    Get PDF
    Aim: To undertake a systematic review and meta-analysis of prospective studies to determine the effect of ginger supplementation on serum C-reactive protein (CRP), lipid profile, and glycaemia. Method: PubMed-MEDLINE, Web of Science, Cochrane Database, and Google Scholar databases were searched (up until July 2016) to identify prospective studies evaluating the impact of ginger supplementation on serum CRP. Random-effects model meta-analysis was used for quantitative data synthesis. Sensitivity analysis was conducted using the leave-one-out method. Heterogeneity was quantitatively assessed using the I2 index. Systematic review registration: CRD42016035973. Results: From a total of 265 entries identified via searches, 9 studies were included in the final selection. The meta-analysis indicated a significant reduction in serum CRP concentrations following ginger supplementation [weighted mean difference (WMD)-0.84 mg/L (95% CI -1.38 to -0.31, I2 56.3%)]. The WMD for fasting blood glucose and HbA1c was -1.35 mg/dl (95% CI -2.04 to -0.58, I2 12.1%) and -1.01 (95% CI -1.28 to -0.72, I2 9.4%), respectively. Moreover, high-density lipoprotein and triglyceride significantly improved after ginger administration [1.16 mg/dl (95% CI 0.52 to 1.08, I2 12.3%) and -1.63 mg/dl (95% CI -3.10 to -0.17, I2 8.1%), respectively]. These findings were robust in sensitivity analyses. Random-effects meta-regression revealed that changes in serum CRP levels were independent of the dosage of ginger supplementation (slope -0.20; 95% CI -0.95 to 0.55; p=0.60). Conclusions: This meta-analysis suggests that ginger supplementation significantly reduces serum CRP and improves glycaemia indexes and lipid profile. Randomized control trials with larger sample size and with a longer-term follow-up period should be considered for future investigations

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation

    Experimental and numerical investigation of the effect of water cooling on the temperature distribution of photovoltaic modules using copper pipes

    Get PDF
    In hot climates, PV efficiency drops dramatically if the surface temperature of the panels rises over a specific limit. Consequently, a cooling system is required to preserve PV modules as close to their operating temperature as feasible. For this purpose, the influence of an increase in PV surface temperature on PV performance was studied experimentally and numerically at the Research Institute of Petroleum Industry (RIPI) in July. The current study uses a cooling system consisting of rows of copper pipes connected to the PV backside. The experiments are conducted for four distinct scenarios, each with a different input fluid temperature ranging from 19.5 to 61 °C. The parametric analysis focuses on three influential factors: ambient temperature, solar radiation, and fluid inlet temperatures. In addition, other inputs are configured in accordance with the experimental conditions. The results showed that installing a cooling water system decreased the PV surface temperature from 60.20 °C to 40.24 °C at 9:00 am and from 73.98 °C to 73.33 °C at 1:30 pm. Furthermore, the electrical, thermal, overall, and exergy efficiencies drop as radiation intensity and water inlet temperature increase. In addition, the numerical results are validated with the experimental ones, and it shows high degrees of concordance

    Age-related decline in antibiotic prescribing for uncomplicated respiratory tract infections in primary care in England following the introduction of a national financial incentive (the Quality Premium) for health commissioners to reduce use of antibiotics in the community: an interrupted time series analysis

    Get PDF
    Objectives: To assess the impact of the 2015/16 NHS England Quality Premium (which provided a financial incentive for Clinical Commissioning Groups to reduce antibiotic prescribing in primary care) on antibiotic prescribing by General Practitioners (GPs) for respiratory tract infections (RTIs). Method: Interrupted time series analysis using monthly patient-level consultation and prescribing data obtained from the Clinical Practice Research Datalink (CPRD), between April 2011 and March 2017. The study population comprised patients consulting a GP who were diagnosed with an RTI. We assessed the rate of antibiotic prescribing in patients (both aggregate and stratified by age) with a recorded diagnosis of uncomplicated RTI, before and after the implementation of the Quality Premium. Results: Prescribing rates decreased over the six year study period, with evident seasonality. Notably, there was a 3% drop in the rate of antibiotic prescribing (equating to 14.65 prescriptions per 1,000 RTI consultations) (p<0.05) in April 2015, coinciding with the introduction of the Quality Premium. This reduction was sustained, such that after two years there was a 3% decrease in prescribing relative to that expected had the pre-intervention trend continued. There was also a concurrent 2% relative reduction in the rate of broad-spectrum antibiotic prescribing. Antibiotic prescribing for RTIs diagnosed in children showed the greatest decline with a 6% relative change two years after the intervention. Of the RTI indications studied, the greatest reductions in antibiotic prescribing were seen for patients with sore throats. Conclusions: Community prescribing of antibiotics for RTIs significantly decreased following the introduction of the Quality Premium, with the greatest reduction seen in younger patients

    Preclinical studies of166Ho-chitosan for treatment of hepatocellular carcinoma

    Get PDF
    Introduction: Recently, due to the special characteristics of166Ho and chitosan,166Ho-chitosan complex was developed for treatment of tumors such as hepatocellular carcinoma. This complex has been lately prepared with high radiochemical purity in our lab. The preclinical studies of the complex however should be performed to evaluate the tracer concentration in target and normal tissues before human use. Methods: In this study,166Ho-chitosan was prepared and its preclinical studies for treatment of hepatocellular carcinoma was carried out by injection of the radiopharmaceutical into the rabbit's liver via two different methods, surgery and venography. Leakage of the injected activity from the injection site in the rabbit organs was investigated using SPECT and SPECT-CT imaging up to 24 hours. Results: Both SPECT and SPECT-CT imaging of the rabbits showed that there was no significant leakage of the injected activity. Almost all the activity would remain in the injection site at least 24 h post injection. Conclusion: Considering all of the excellent features of the complex, this radiopharmaceutical is suggestive for treatment of hepatocellular carcinoma by radioembolization method

    Fuzzy uncertainty analysis in the flutter boundary of an aircraft wing subjected to a thrust force

    Get PDF
    In this study, flutter uncertainty analysis of an aircraft wing subjected to a thrust force is investigated using fuzzy method. The linear wing model contains bending and torsional flexibility and the engine is considered as a rigid external mass with thrust force. Peters’ unsteady thin airfoil theory is used to model the aerodynamic loading. The aeroelastic governing equations are derived based on Hamilton’s principle and converted to a set of ordinary differential equations using Galerkin method. In the flutter analysis, it is assumed that the wing static deflections do not have influence on the results. The wing bending and torsional rigidity, aerodynamic lift curve slope and air density are considered as uncertain parameters and modelled as triangle and trapezium membership functions. The eigenvalue problem with fuzzy input parameters is solved using fuzzy Taylor expansion method and a sensitivity analysis is performed. Also, the upper and lower bounds of flutter region at different α-cuts are extracted. Results show that this method is a low-cost method with reasonable accuracy to estimate the flutter speed and frequency in the presence of uncertainties

    The Effect of Dietary Carbohydrate and Fat Manipulation on the Metabolome and Markers of Glucose and Insulin Metabolism: A Randomised Parallel Trial.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2022-09-01, epub 2022-09-07Publication status: PublishedHigh carbohydrate, lower fat (HCLF) diets are recommended to reduce cardiometabolic disease (CMD) but low carbohydrate high fat (LCHF) diets can be just as effective. The effect of LCHF on novel insulin resistance biomarkers and the metabolome has not been fully explored. The aim of this study was to investigate the impact of an ad libitum 8-week LCHF diet compared with a HCLF diet on CMD markers, the metabolome, and insulin resistance markers. n = 16 adults were randomly assigned to either LCHF (n = 8, &lt;50 g CHO p/day) or HCLF diet (n = 8) for 8 weeks. At weeks 0, 4 and 8, participants provided fasted blood samples, measures of body composition, blood pressure and dietary intake. Samples were analysed for markers of cardiometabolic disease and underwent non-targeted metabolomic profiling. Both a LCHF and HCLF diet significantly (p &lt; 0.01) improved fasting insulin, HOMA IR, rQUICKI and leptin/adiponectin ratio (p &lt; 0.05) levels. Metabolomic profiling detected 3489 metabolites with 78 metabolites being differentially regulated, for example, an upregulation in lipid metabolites following the LCHF diet may indicate an increase in lipid transport and oxidation, improving insulin sensitivity. In conclusion, both diets may reduce type 2 diabetes risk albeit, a LCHF diet may enhance insulin sensitivity by increasing lipid oxidation
    corecore