80 research outputs found

    Asymptotic approach to Special Relativity compatible with a relativistic principle

    Full text link
    We propose a general framework to describe Planckian deviations from Special Relativity (SR) compatible with a relativistic principle. They are introduced as the leading corrections in an asymptotic approach to SR going beyond the energy power expansion of effective field theories. We discuss the conditions in which these Planckian effects might be experimentally observable in the near future, together with the non-trivial limits of applicability of this asymptotic approach that such a situation would produce, both at the very high (ultraviolet) and the very low (infrared) energy regimes.Comment: 12 page

    Effect of design factors on drivers’ understanding of variable message signs locating traffic events

    Get PDF
    Background: This article addresses how to combine three elements (a pictogram, an arrow, a city) in a variable message sign (VMS) to locate temporary events (e.g., “congestion before Milan”). We adopted the G1c stack model as a design template, an Advanced Directional Sign (ADS) recommended by the 1968 Convention to locate cities, which can be easily adapted to modern VMS. However, as most of the VMS in operation are not full-matrix, we have also adapted this design to more restrictive display conditions. This adaptation critically concerned the arrow function on the message that either points up broadly (generically, as in G1c) or connects with the city more specifically (explicit). Although G1c reads top-down like a verbal text, previous studies indicated drivers’ preference for bottom-up landmark order in VMS, so both ordering criteria were compared in the present study. Methods: The experiment involved 99 people (70 drivers and 29 drivers in training). Participants were informed that they would see various VMS reporting certain events (e.g., congestion) related to one of four cities along the road. Their task was to identify the event location (before, after the city) after seeing blocks of two consecutive messages (first a complementary message, then the target message), limiting their response to the content of the second message. Three design-focused factors were tested: typographical alignment (left or centre), landmark order (bottom-up or top-down), and arrow function (explicit or generic). The rate of correct location answers was the dependent variable. Results: Results revealed that comprehension varied greatly depending on the arrow’s function and the placing of elements. In the explicit-arrow messages, comprehension was good both in the Top-down and Bottom-up conditions, but in the generic-arrow messages, only in the Bottom-up condition was comprehension good. Likewise, understanding was better in the Before condition than in the After condition in all combinations of Landmark order and Arrow function conditions. In general, left alignment of the central column elements of the VMS improved comprehension respective to centred alignment. Finally, the complementary message factor had an effect under certain circumstances. Practical implications: The messages displaying a generic arrow (following the G1c model) were better understood when the landmarks were ordered bottom-up, not top-down. In addition, explicit-arrow messages were better understood per se (in the absence of a complementary message) than generic-arrow messages. Overall, this work suggests that improving our understanding of how thought processes and design features relate to each other can contribute to safer driving nationally and internationally

    Statistical Wiring of Thalamic Receptive Fields Optimizes Spatial Sampling of the Retinal Image

    Get PDF
    SummaryIt is widely assumed that mosaics of retinal ganglion cells establish the optimal representation of visual space. However, relay cells in the visual thalamus often receive convergent input from several retinal afferents and, in cat, outnumber ganglion cells. To explore how the thalamus transforms the retinal image, we built a model of the retinothalamic circuit using experimental data and simple wiring rules. The model shows how the thalamus might form a resampled map of visual space with the potential to facilitate detection of stimulus position in the presence of sensor noise. Bayesian decoding conducted with the model provides support for this scenario. Despite its benefits, however, resampling introduces image blur, thus impairing edge perception. Whole-cell recordings obtained in vivo suggest that this problem is mitigated by arrangements of excitation and inhibition within the receptive field that effectively boost contrast borders, much like strategies used in digital image processing

    Review of dynamic line rating systems for wind power integration

    Get PDF
    When a wind power system is connected to a network point there is a limit of power generation based on the characteristics of the network and the loads connected to it. Traditionally, transmission line limits are estimated conservatively assuming unfavourable weather conditions (high ambient temperature, full sun and low wind speed). However, the transmission capacity of an overhead line increases when wind speed is high, due to the cooling caused by wind in the distribution lines. Dynamic line rating (DLR) systems allow monitoring real weather conditions and calculating the real capacity of lines. Thus, when planning wind power integration, if dynamic line limits are considered instead of the conservative and static limits, estimated capacity increases. This article reviews all technologies developed for real-time monitoring during the last thirty years, as well as some case studies around the world, and brings out the benefits and technical limitations of employing dynamic line rating on overhead lines. Further, the use of these DLR systems in wind integration is reviewed.This work is financially supported by the Ministerio de EconomĂ­a y Competitividad under the project DPI2013-44502-R and the Eusko Jaurlaritza under the project SAI12/103

    Probing the quantum-gravity realm with slow atoms

    Full text link
    For the study of Planck-scale modifications of the energy-momentum dispersion relation, which had been previously focused on the implications for ultrarelativistic (ultrafast) particles, we consider the possible role of experiments involving nonrelativistic particles, and particularly atoms. We extend a recent result establishing that measurements of "atom-recoil frequency" can provide insight that is valuable for some theoretical models. And from a broader perspective we analyze the complementarity of the nonrelativistic and the ultrarelativistic regimes in this research area.Comment: LaTex, 13 page

    The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms

    Get PDF
    © 2008 by The American Society for Cell Biology. Under the License and Publishing Agreement, authors grant to the general public, effective two months after publication of (i.e.,. the appearance of) the edited manuscript in an online issue of MBoC, the nonexclusive right to copy, distribute, or display the manuscript subject to the terms of the Creative Commons–Noncommercial–Share Alike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0).The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3ÎČ homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.Deutsche Forschungsgemeinschaf

    Childhood asthma outcomes during the COVID-19 pandemic: Findings from the PeARL multi-national cohort.

    Get PDF
    BACKGROUND: The interplay between COVID-19 pandemic and asthma in children is still unclear. We evaluated the impact of COVID-19 pandemic on childhood asthma outcomes. METHODS: The PeARL multinational cohort included 1,054 children with asthma and 505 non-asthmatic children aged between 4-18 years from 25 pediatric departments, from 15 countries globally. We compared the frequency of acute respiratory and febrile presentations during the first wave of the COVID-19 pandemic between groups and with data available from the previous year. In children with asthma, we also compared current and historical disease control. RESULTS: During the pandemic, children with asthma experienced fewer upper respiratory tract infections, episodes of pyrexia, emergency visits, hospital admissions, asthma attacks and hospitalizations due to asthma, in comparison to the preceding year. Sixty-six percent of asthmatic children had improved asthma control while in 33% the improvement exceeded the minimal clinically important difference. Pre-bronchodilatation FEV1 and peak expiratory flow rate were improved during the pandemic. When compared to non-asthmatic controls, children with asthma were not at increased risk of LRTIs, episodes of pyrexia, emergency visits or hospitalizations during the pandemic. However, an increased risk of URTIs emerged. CONCLUSION: Childhood asthma outcomes, including control, were improved during the first wave of the COVID-19 pandemic, probably because of reduced exposure to asthma triggers and increased treatment adherence. The decreased frequency of acute episodes does not support the notion that childhood asthma may be a risk factor for COVID-19. Furthermore, the potential for improving childhood asthma outcomes through environmental control becomes apparent

    Digital strategies to a local cultural tourism development: Project e-Carnide

    Get PDF
    Digital humanities and smart economy strategies are being seen as an important link between tourism and cultural heritage, as they may contribute to differentiate the audiences and to provide different approaches. Carnide is a peripheral neighbourhood of Lisbon with an elderly population, visible traces of rurality, and strong cultural and religious traditions. The academic project e-Carnide concerns its tangible and intangible cultural heritage and the data dissemination through a website and a mobile app, with textual and visual information. The project aims to analyse the impact of technological solutions on cultural tourism development in a sub-region, involving interdisciplinary research in heritage, history of art, ethnography, design communication and software engineering and the collaboration between the university and local residents in a dynamic and innovative way. Framed by a theoretical approach about the role of smart economy for the cultural tourism development in peripheral areas, this paper focuses on a case study, dealing with documents, interviews and observations, in order to understand how the e-Carnide project evolves. The study comprises an analysis about the strengths, weaknesses, opportunities and threats (SWOT analysis) of the project in view to realize its social and cultural implications and to appreciate how it can be applied in other similar and enlarged projects. Results of the research indicates that the new technological strategies can promote the involvement of the population in the knowledge of its own heritage as a factor of cultural and creative tourism development centred on an authentic and immersive experience of the places

    Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A

    Get PDF
    Background The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4. Results We have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA. Conclusions In S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in combination, in which PKA is often involved. Redundant signalling pathways confer a greater robustness to the response to glucose, while cooperative pathways provide a greater flexibility.BT/BiotechnologyApplied Science

    Understanding the limitations of radiation-induced cell cycle checkpoints

    Get PDF
    The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4–6 h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10–20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency
    • 

    corecore