904 research outputs found
The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells.
BackgroundIdentification and characterization of molecular controls that regulate mammary stem and progenitor cell homeostasis are critical to our understanding of normal mammary gland development and its pathology.ResultsWe demonstrate that conditional knockout of Sox9 in the mouse mammary gland results in impaired postnatal development. In short-term lineage tracing in the postnatal mouse mammary gland using Sox9-CreER driven reporters, Sox9 marked primarily the luminal progenitors and bipotent stem/progenitor cells within the basal mammary epithelial compartment. In contrast, long-term lineage tracing studies demonstrate that Sox9+ precursors gave rise to both luminal and myoepithelial cell lineages. Finally, fate mapping of Sox9 deleted cells demonstrates that Sox9 is essential for luminal, but not myoepithelial, lineage commitment and proliferation.ConclusionsThese studies identify Sox9 as a key regulator of mammary gland development and stem/progenitor maintenance
Shuttling components of nuclear import machinery involved in nuclear translocation of steroid receptors exit nucleus via exportin-1/CRM-1* independent pathway
AbstractThe nucleocytoplasmic transport processes are mediated by soluble transport factors constantly navigating between nuclear and cytoplasmic compartments. Our understanding about nuclear export of general ‘nuclear import factors’ that deliver the cargo to the nucleus is still fragmentary. Utilizing green fluorescent protein tagged glucocorticoid receptor (GR) and relA as our working model and with judicious use of LMB, we show in living cells that all the soluble components of the nuclear import machinery exit nucleus via exportin1/CRM1 independent pathway(s)
CD8 T-Cell Responses in Incident and Prevalent Human Papillomavirus Types 16 and 18 Infections
CD8 T-cell responses were examined in subjects with incident (new following negative visits) or prevalent (lasting ≥ 4 months) human papillomavirus type 16 (HPV16) or human papillomavirus (HPV18) infection. The groups were chosen from a cohort of women being followed every 4 months with cervical cytology and HPV-DNA testing. Enzyme-linked immunospot (ELISPOT) assay was performed at enrollment (time zero) and one year later. At time zero, 1 (6%) of 17 subjects with incident HPV 16/18 infections had positive ELISPOT results which increased to 6 (35%) at one year. For the subjects with prevalent HPV 16/18 infections, the ELISPOT results were similar at time zero (2 (15%) of 15 subjects positive) and at one year (3 (20%)). While all of the 11 women with prevalent HPV16 infection showed clearance one year later, unexpectedly only 1 (25%) of 4 women with prevalent HPV18 infection demonstrated clearance one year later (P = .009)
Large effects on \BsBs mixing by vector-like quarks
We calculate the contributions of the vector-like quark model to \BsBs
mixing, taking into account the constraints from the decay . In
this model the neutral bosons mediate flavor-changing interactions at the tree
level. However, \BsBs mixing is dominated by contributions from the box
diagrams with the top quark and the extra up-type quark. In sizable ranges of
the model parameters, the mixing parameter is much different from the
standard model prediction.Comment: 11 pages, 4 figures, To be published in Phys. Rev.
Cardiovascular magnetic resonance tagging imaging correlates with myocardial dysfunction and T2 mapping in idiopathic dilated cardiomyopathy
To evaluate the details of myocardial dysfunction in dilated cardiomyopathy (DCM) patients using tagging images and the correlation of tagging imaging with tissue characteristics. C
A unique B2 B cell subset in the intestine
Over 80% of the body's activated B cells are located in mucosal sites, including the intestine. The intestine contains IgM+ B cells, but these cells have not been characterized phenotypically or in terms of their developmental origins. We describe a previously unidentified and unique subset of immunoglobulin M+ B cells that present with an AA4.1−CD21−CD23− major histocompatibility complex class IIbright surface phenotype and are characterized by a low frequency of somatic hypermutation and the potential ability to produce interleukin-12p70. This B cell subset resides within the normal mucosa of the large intestine and expands in response to inflammation. Some of these intestinal B cells originate from the AA4.1+ immature B2 cell pool in the steady state and are also recruited from the recirculating naive B cell pool in the context of intestinal inflammation. They develop in an antigen-independent and BAFF-dependent manner in the absence of T cell help. Expansion of these cells can be induced in the absence of the spleen and gut-associated lymphoid tissues. These results describe the existence of an alternative pathway of B cell maturation in the periphery that gives rise to a tissue-specific B cell subset
Recommended from our members
Implementation of earlier antibiotic administration in patients with severe sepsis and septic shock in Japan: a descriptive analysis of a prospective observational study.
BACKGROUND: Time to antibiotic administration is a key element in sepsis care; however, it is difficult to implement sepsis care bundles. Additionally, sepsis is different from other emergent conditions including acute coronary syndrome, stroke, or trauma. We aimed to describe the association between time to antibiotic administration and outcomes in patients with severe sepsis and septic shock in Japan. METHODS: This prospective observational study enrolled 1184 adult patients diagnosed with severe sepsis based on the Sepsis-2 criteria and admitted to 59 intensive care units (ICUs) in Japan between January 1, 2016, and March 31, 2017, as the sepsis cohort of the Focused Outcomes Research in Emergency Care in Acute Respiratory Distress Syndrome, Sepsis and Trauma (FORECAST) study. We compared the characteristics and in-hospital mortality of patients administered with antibiotics at varying durations after sepsis recognition, i.e., 0-60, 61-120, 121-180, 181-240, 241-360, and 361-1440 min, and estimated the impact of antibiotic timing on risk-adjusted in-hospital mortality using the generalized estimating equation model (GEE) with an exchangeable, within-group correlation matrix, with "hospital" as the grouping variable. RESULTS: Data from 1124 patients in 54 hospitals were used for analyses. Of these, 30.5% and 73.9% received antibiotics within 1 h and 3 h, respectively. Overall, the median time to antibiotic administration was 102 min [interquartile range (IQR), 55-189]. Compared with patients diagnosed in the emergency department [90 min (IQR, 48-164 min)], time to antibiotic administration was shortest in patients diagnosed in ICUs [60 min (39-180 min)] and longest in patients transferred from wards [120 min (62-226)]. Overall crude mortality was 23.4%, where patients in the 0-60 min group had the highest mortality (28.0%) and a risk-adjusted mortality rate [28.7% (95% CI 23.3-34.1%)], whereas those in the 61-120 min group had the lowest mortality (20.2%) and risk-adjusted mortality rates [21.6% (95% CI 16.5-26.6%)]. Differences in mortality were noted only between the 0-60 min and 61-120 min groups. CONCLUSIONS: We could not find any association between earlier antibiotic administration and reduction in in-hospital mortality in patients with severe sepsis
An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions
- …