39 research outputs found

    Aggressive breast cancer in western Kenya has early onset, high proliferation, and immune cell infiltration

    Get PDF
    Background Breast cancer incidence and mortality vary significantly among different nations and racial groups. African nations have the highest breast cancer mortality rates in the world, even though the incidence rates are below those of many nations. Differences in disease progression suggest that aggressive breast tumors may harbor a unique molecular signature to promote disease progression. However, few studies have investigated the pathology and clinical markers expressed in breast tissue from regional African patient populations. Methods We collected 68 malignant and 89 non-cancerous samples from Kenyan breast tissue. To characterize the tumors from these patients, we constructed tissue microarrays (TMAs) from these tissues. Sections from these TMAs were stained and analyzed using immunohistochemistry to detect clinical breast cancer markers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 receptor (HER2) status, Ki67, and immune cell markers. Results Thirty-three percent of the tumors were triple negative (ER-, PR-, HER2-), 59 % were ER+, and almost all tumors analyzed were HER2-. Seven percent of the breast cancer patients were male, and 30 % were <40 years old at diagnosis. Cancer tissue had increased immune cell infiltration with recruitment of CD163+ (M2 macrophage), CD25+ (regulatory T lymphocyte), and CD4+ (T helper) cells compared to non-cancer tissue. Conclusions We identified clinical biomarkers that may assist in identifying therapy strategies for breast cancer patients in western Kenya. Estrogen receptor status in particular should lead initial treatment strategies in these breast cancer patients. Increased CD25 expression suggests a need for additional treatment strategies designed to overcome immune suppression by CD25+ cells in order to promote the antitumor activity of CD8+ cytotoxic T cells

    A Missense Mutation in the Sodium Phosphate Co-transporter Slc34a1 Impairs Phosphate Homeostasis

    No full text
    The sodium phosphate co-transporters Npt2a and Npt2c play important roles in the regulation of phosphate homeostasis. Slc34a1, the gene encoding Npt2a, resides downstream of the gene encoding coagulation factor XII (f12) and was inadvertently modified while generating f12−/− mice. In this report, the renal consequences of this modification are described. The combined single allelic mutant Slc34a1m contains two point mutations in exon 13: A499V is located in intracellular loop 5, and V528M is located in transmembrane domain 11. In addition to the expected coagulopathy of the f12−/− phenotype, mice homozygous for the double allelic modification (f12−/−/slc34a1m/m) displayed hypophosphatemia, hypercalcemia, elevated levels of alkaline phosphatase, urolithiasis, and hydronephrosis. Strategic cross-breedings demonstrated that the kidney-related pathology was associated only with autosomal recessive transmission of the slc34a1m gene and was not influenced by the simultaneous inactivation of f12. Npt2a[V528M] could be properly expressed in opossum kidney cells, but Npt2a[A499V] could not. These results suggest that a single amino acid substitution in Npt2a can lead to improper translocation of the protein to the cell membrane, disturbance of phosphate homeostasis, and renal calcification. Whether point mutations in the SLC34A1 gene can lead to hypophosphatemia and nephrolithiasis in humans remains unknown

    Abrogation of plasminogen activator inhibitor-1-vitronectin interaction ameliorates acute kidney injury in murine endotoxemia.

    No full text
    Sepsis-induced acute kidney injury (AKI) contributes to the high mortality and morbidity in patients. Although the pathogenesis of AKI during sepsis is poorly understood, it is well accepted that plasminogen activator inhibitor-1 (PAI-1) and vitronectin (Vn) are involved in AKI. However, the functional cooperation between PAI-1 and Vn in septic AKI has not been completely elucidated. To address this issue, mice were utilized lacking either PAI-1 (PAI-1-/-) or expressing a PAI-1-mutant (PAI-1R101A/Q123K) in which the interaction between PAI-1 and Vn is abrogated, while other functions of PAI-1 are retained. It was found that both PAI-1-/- and PAI-1R101A/Q123K mice are associated with decreased renal dysfunction, apoptosis, inflammation, and ERK activation as compared to wild-type (WT) mice after LPS challenge. Also, PAI-1-/- mice showed attenuated fibrin deposition in the kidneys. Furthermore, a lack of PAI-1 or PAI-1-Vn interaction was found to be associated with an increase in activated Protein C (aPC) in plasma. These results demonstrate that PAI-1, through its interaction with Vn, exerts multiple deleterious mechanisms to induce AKI. Therefore, targeting of the PAI-1-Vn interaction in kidney represents an appealing therapeutic strategy for the treatment of septic AKI by not only altering the fibrinolytic capacity but also regulating PC activity

    Laser-Induced Noninvasive Vascular Injury Models in Mice Generate Platelet- and Coagulation-Dependent Thrombi

    No full text
    A minimally invasive laser-induced injury model is described to study thrombus development in mice in vivo. The protocol involves focusing the beam of an argon-ion laser through a compound microscope on the vasculature of a mouse ear that is sufficiently thin such that blood flow can be visualized by intravital microscopy. Two distinct injury models have been established. The first involves direct laser illumination with a short, high-intensity pulse. In this case, thrombus formation is inhibited by the GPIIb/IIIa antagonist, G4120. However, the anticoagulants, hirulog, PPACK, and NapC2 have minimal effect. This indicates that thrombus development induced by this model mainly involves platelet interactions. The second model involves low-intensity laser illumination of mice injected with Rose Bengal dye to induce photochemical injury in the region of laser illumination. Thrombi generated by this latter procedure have a slower development and are inhibited by both anticoagulant and anti-platelet compounds

    Plasminogen Deficiency Significantly Reduces Vascular Wall Disease in a Murine Model of Type IIa Hypercholesterolemia

    No full text
    The fibrinolytic system has been implicated in the genesis and progression of atherosclerosis. It has been reported that a plasminogen (Pg) deficiency (Plg&minus;/&minus;) exacerbates the progression of atherosclerosis in Apoe&minus;/&minus; mice. However, the manner in which Plg functions in a low-density lipoprotein-cholesterol (LDL-C)-driven model has not been evaluated. To characterize the effect of Pg in an LDL-C-driven model, mice with a triple deficiency of the LDL-receptor (LDLr), along with the active component (apobec1) of the apolipoprotein B editosome complex, and Pg (L&minus;/&minus;/A&minus;/&minus;/Plg&minus;/&minus;), were generated. Atherosclerotic plaque formation was severely retarded in the absence of Pg. In vitro studies demonstrated that LDL uptake by macrophages was enhanced by plasmin (Pm), whereas circulating levels of LDL were enhanced, relative to L&minus;/&minus;/A&minus;/&minus; mice, and VLDL synthesis was suppressed. These results indicated that clearance of lipoproteins in the absence of LDLr may be regulated by Pg/Pm. Conclusions: The results from this study indicate that Pg exacerbates atherosclerosis in an LDL-C model of atherosclerosis and also plays a role in lipoprotein modification and clearance. Therefore, controlling the Pg system on macrophages to prevent foam cell formation would be a novel therapeutic approach

    PAI-1 accumulation in the kidney of mice 24 hr after LPS challenge.

    No full text
    <p>(A) Real-time RT-PCR analysis of renal PAI-1 mRNA expression. The mRNA expression was determined as described. Data are expressed as the mean ± SEM, (N = 4 mice per group). (B) Immunohistological staining of PAI-1 (reddish brown) in LPS-treated kidney tissues. The experiment was performed as described using a polyclonal anti-mouse PAI-1 antibody. PAI-1 staining in representative micrograph from each group is shown by arrows. Magnification: 40x (scale bar, 100 μm).</p

    aPC activity in LPS-challenged mice.

    No full text
    <p>Citrated plasma was collected from WT, PAI-1<sup>−/−</sup>, and PAI-1<sup>R101A/Q123K</sup> mice at 24 hr after saline (control) or LPS injection. Plasma levels of aPC were determined as described. Data were plotted as the percentage of aPC activity remaining after LPS challenge, taking the non-LPS control as 100% activity. Data are expressed as the mean ± SEM of 5–6 mice. *<i>P</i><0.05.</p
    corecore