1,333 research outputs found

    Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation

    Get PDF
    Objective Mitochondrial disturbances of energy-generating systems in childhood are a heterogeneous group of disorders. The aim of this multi-site survey was to characterise the natural course of a novel mitochondrial disease with ATP synthase deficiency and mutation in the TMEM70 gene. Methods Retrospective clinical data and metabolic profiles were collected and evaluated in 25 patients (14 boys, 11 girls) from seven European countries with a c. 317-2A -> G mutation in the TMEM70 gene. Results Severe muscular hypotonia (in 92% of newborns), apnoic spells (92%), hypertrophic cardiomyopathy (HCMP; 76%) and profound lactic acidosis (lactate 5-36 mmol/l; 92%) with hyperammonaemia (100-520 mu mol/l; 86%) were present from birth. Ten patients died within the first 6 weeks of life. Most patients surviving the neonatal period had persisting muscular hypotonia and developed psychomotor delay. HCMP was non-progressive and even disappeared in some children. Hypospadia was present in 54% of the boys and cryptorchidism in 67%. Increased excretion of lactate and 3-methylglutaconic acid (3-MGC) was observed in all patients. In four surviving patients, life-threatening hyperammonaemia occurred during childhood, triggered by acute gastroenteritis and prolonged fasting. Conclusions ATP synthase deficiency with mutation in TMEM70 should be considered in the diagnosis and management of critically ill neonates with early neonatal onset of muscular hypotonia, HCMP and hypospadias in boys accompanied by lactic acidosis, hyperammonaemia and 3-MGC-uria. However, phenotype severity may vary significantly. The disease occurs frequently in the Roma population and molecular-genetic analysis of the TMEM70 gene is sufficient for diagnosis without need of muscle biopsy in affected children

    Utility of Whole Blood Thiamine Pyrophosphate Evaluation in TPK1-Related Diseases

    Get PDF
    TPK1 mutations are a rare, but potentially treatable, cause of thiamine deficiency. Diagnosis is challenging given the phenotypic overlap that exists with other metabolic and neurological disorders. We report a case of TPK1-related disease presenting with Leigh-like syndrome and review the diagnostic utility of thiamine pyrophosphate (TPP) blood measurement. The proband, a 35-year-old male, presented at four months of age with recurrent episodes of post-infectious encephalopathy. He subsequently developed epilepsy, learning difficulties, sensorineural hearing loss, spasticity, and dysphagia. There was a positive family history for Leigh syndrome in an older brother. Plasma lactate was elevated (3.51 mmol/L) and brain MRI showed bilateral basal ganglia hyperintensities, indicative of Leigh syndrome. Histochemical and spectrophotometric analysis of mitochondrial respiratory chain complexes I, II+III, and IV was normal. Genetic analysis of muscle mitochondrial DNA was negative. Whole exome sequencing of the proband confirmed compound heterozygous variants in TPK1: c. 426G>C (p. Leu142Phe) and c. 258+1G>A (p.?). Blood TPP levels were reduced, providing functional evidence for the deleterious effects of the variants. We highlight the clinical and bioinformatics challenges to diagnosing rare genetic disorders and the continued utility of biochemical analyses, despite major advances in DNA sequencing technology, when investigating novel, potentially disease-causing, genetic variants. Blood TPP measurement represents a fast and cost-effective diagnostic tool in TPK1-related diseases

    Non-Perturbative Superpotentials in F-theory and String Duality

    Full text link
    We use open-closed string duality between F-theory on K3xK3 and type II strings on CY manifolds without branes to study non-perturbative superpotentials in generalized flux compactifications. On the F-theory side we obtain the full flux potential including D3-instanton contributions and show that it leads to an explicit and simple realization of the three ingredients of the KKLT model for stringy dS vacua. The D3-instanton contribution is highly non-trivial, can be systematically computed including the determinant factors and demonstrates that a particular flux lifts very effectively zero modes on the instanton. On the closed string side, we propose a generalization of the Gukov-Vafa-Witten superpotential for type II strings on generalized CY manifolds, depending on all moduli multiplets.Comment: 49 pages, harvmac, 1 figure; references & figures adde

    Phylogenetic Analysis of Pelecaniformes (Aves) Based on Osteological Data: Implications for Waterbird Phylogeny and Fossil Calibration Studies

    Get PDF
    ) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification. (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed.Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny

    The evolution of strong reproductive isolation between sympatric intertidal snails

    Get PDF
    The evolution of strong reproductive isolation (RI) is fundamental to the origins and maintenance of biological diversity, especially in situations where geographical distributions of taxa broadly overlap. But what is the history behind strong barriers currently acting in sympatry? Using whole-genome sequencing and single nucleotide polymorphism genotyping, we inferred (i) the evolutionary relationships, (ii) the strength of RI, and (iii) the demographic history of divergence between two broadly sympatric taxa of intertidal snail. Despite being cryptic, based on external morphology, Littorina arcana and Littorina saxatilis differ in their mode of female reproduction (egg-laying versus brooding), which may generate a strong post-zygotic barrier. We show that egg-laying and brooding snails are closely related, but genetically distinct. Genotyping of 3092 snails from three locations failed to recover any recent hybrid or backcrossed individuals, confirming that RI is strong. There was, however, evidence for a very low level of asymmetrical introgression, suggesting that isolation remains incomplete. The presence of strong, asymmetrical RI was further supported by demographic analysis of these populations. Although the taxa are currently broadly sympatric, demographic modelling suggests that they initially diverged during a short period of geographical separation involving very low gene flow. Our study suggests that some geographical separation may kick-start the evolution of strong RI, facilitating subsequent coexistence of taxa in sympatry. The strength of RI needed to achieve sympatry and the subsequent effect of sympatry on RI remain open questions. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'

    Classifying the precancers: A metadata approach

    Get PDF
    BACKGROUND: During carcinogenesis, precancers are the morphologically identifiable lesions that precede invasive cancers. In theory, the successful treatment of precancers would result in the eradication of most human cancers. Despite the importance of these lesions, there has been no effort to list and classify all of the precancers. The purpose of this study is to describe the first comprehensive taxonomy and classification of the precancers. As a novel approach to disease classification, terms and classes were annotated with metadata (data that describes the data) so that the classification could be used to link precancer terms to data elements in other biological databases. METHODS: Terms in the UMLS (Unified Medical Language System) related to precancers were extracted. Extracted terms were reviewed and additional terms added. Each precancer was assigned one of six general classes. The entire classification was assembled as an XML (eXtensible Mark-up Language) file. A Perl script converted the XML file into a browser-viewable HTML (HyperText Mark-up Language) file. RESULTS: The classification contained 4700 precancer terms, 568 distinct precancer concepts and six precancer classes: 1) Acquired microscopic precancers; 2) acquired large lesions with microscopic atypia; 3) Precursor lesions occurring with inherited hyperplastic syndromes that progress to cancer; 4) Acquired diffuse hyperplasias and diffuse metaplasias; 5) Currently unclassified entities; and 6) Superclass and modifiers. CONCLUSION: This work represents the first attempt to create a comprehensive listing of the precancers, the first attempt to classify precancers by their biological properties and the first attempt to create a pathologic classification of precancers using standard metadata (XML). The classification is placed in the public domain, and comment is invited by the authors, who are prepared to curate and modify the classification

    Effect of a high fat diet on lipid absorption and fatty acid transport in a rat model of short bowel syndrome

    Full text link
    Long chain fatty acids (LCFAs) appear to be powerful stimulants for small bowel adaptation in patients with short bowel syndrome (SBS). However, the dietary lipid content may alter intestinal lipid transport. The aim of this study was to investigate the effects of a high fat diet (HFD) on in vivo lipid absorption and molecular and cellular mechanisms of LCFAs uptake by the remaining bowel. Male Sprague-Dawley rats (240–280) were randomly assigned to one of three groups: sham rats fed normal chow (sham-NC), SBS rats fed NC (SBS-NC) and SBS rats fed HFD (SBS-HFD). SBS rats underwent a 75% small bowel resection. Rats were sacrificed on day 3 or 14. Body weight, fat intake and fat clearance (total fecal fat) were measured twice a week. Fat absorbability was calculated as intake minus clearance and was expressed as percent of intake. Total RNA from the mucosa of duodenum, jejunum and ileum was extracted using TRIZOL Reagent. Northern blot analysis was performed to determine FAT/CD36 mRNA levels. Enterocyte LCFA transport was measured on day 14. LCFA uptake was determined by measuring cellular [3H]-oleate uptake over time (4–120 s). Mean (±SE) FAT/CD36 mRNA levels and oleate uptake kinetic parameters were analyzed using ANOVA. Fat absorbability diminished after bowel resection, suggesting fat malabsorption. Remaining bowel in SBS-NC rats responded by an increase in FAT/CD36 mRNA levels in the duodenum and ileum on day 3, and the duodenum and jejunum on day 14 compared to sham-NC animals, and was accompanied by an increase in enterocyte LCFA transport in all segments. Exposure to a HFD for 14 days resulted in significantly increased fat absorbability after 3 days compared to SBS-NC rats. However, FAT/CD36 mRNA levels (vs. SBS-NC) decreased in all segments on day 3. On day 14, FAT/CD36 mRNA levels were decreased in the duodenum and ileum and were accompanied by reduced oleate uptake by isolated enterocytes in the ileum (vs. SBS-NC). In a rat model of SBS, early high fat diet increased lipid absorptive capacity of the intestinal remnant as seen by increased fat absorbability. The main mechanisms of this effect may be an acceleration of structural intestinal adaptation resulting in an increased number of enterocytes. However, at molecular and cellular levels HFD decreased mucosal FAT/CD36 mRNA levels and oleic acid uptake by isolated enterocytes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47157/1/383_2003_Article_1016.pd

    Bi-allelic Variants in TKFC Encoding Triokinase/FMN Cyclase Are Associated with Cataracts and Multisystem Disease

    Get PDF
    We report an inborn error of metabolism caused by TKFC deficiency in two unrelated families. Rapid trio genome sequencing in family 1 and exome sequencing in family 2 excluded known genetic etiologies, and further variant analysis identified rare homozygous variants in TKFC. TKFC encodes a bifunctional enzyme involved in fructose metabolism through its glyceraldehyde kinase activity and in the generation of riboflavin cyclic 4′,5′-phosphate (cyclic FMN) through an FMN lyase domain. The TKFC homozygous variants reported here are located within the FMN lyase domain. Functional assays in yeast support the deleterious effect of these variants on protein function. Shared phenotypes between affected individuals with TKFC deficiency include cataracts and developmental delay, associated with cerebellar hypoplasia in one case. Further complications observed in two affected individuals included liver dysfunction and microcytic anemia, while one had fatal cardiomyopathy with lactic acidosis following a febrile illness. We postulate that deficiency of TKFC causes disruption of endogenous fructose metabolism leading to generation of by-products that can cause cataract. In line with this, an affected individual had mildly elevated urinary galactitol, which has been linked to cataract development in the galactosemias. Further, in light of a previously reported role of TKFC in regulating innate antiviral immunity through suppression of MDA5, we speculate that deficiency of TKFC leads to impaired innate immunity in response to viral illness, which may explain the fatal illness observed in the most severely affected individual
    corecore