92 research outputs found
Polymorphism of the FABP2 gene: a population frequency analysis and an association study with cardiovascular risk markers in Argentina
<p>Abstract</p> <p>Background</p> <p>The FABP2 gene encodes for the intestinal FABP (IFABP) protein, which is expressed only in intestinal enterocytes. A polymorphism at codon 54 in exon 2 of the FABP2 gene exchanges an Alanine (Ala), in the small helical region of the protein, for Threonine (Thr). Given the potential physiological role of the Ala54Thr FABP2 polymorphism, we assess in this study the local population frequency and analyze possible associations with five selected markers, i.e. glycemia, total cholesterol, body mass index (BMI), hypertension, and high Cardiovascular Risk Index (CVR index).</p> <p>Methods</p> <p>We studied 86 men and 116 women. DNA was extracted from a blood drop for genotype analysis. Allele frequencies were calculated by direct counting. Hardy Weinberg Equilibrium was evaluated using a Chi-square goodness of fit test.</p> <p>For the polymorphism association analysis, five markers were selected, i.e. blood pressure, Framingham Risk Index, total cholesterol, BMI, and glycemia.</p> <p>For each marker, the Odds Ratio (OR) was calculated by an online statistic tool.</p> <p>Results</p> <p>Our results reveal a similar population polymorphism frequency as in previous European studies, with <b>q = 0.277 </b>(95% confidence limits 0.234–0.323). No significant association was found with any of the tested markers in the context of our Argentine nutritional and cultural habits. We did, however, observe a tendency for increased Cholesterol and high BMI in Thr54 carriers.</p> <p>Conclusion</p> <p>This is the first study to look at the population frequency of the Thr54 allele in Argentina. The obtained result does not differ from previously reported frequencies in European populations. Moreover, we found no association between the Thr54 allele and any of the five selected markers. The observed tendency to increased total cholesterol and elevated BMI in Thr54 carriers, even though not significant for p < 0.1 could be worth of further investigation to establish whether the Thr54 variant should be taken into consideration in cardiovascular prevention strategies.</p
Long-distance endosome trafficking drives fungal effector production during plant infection
To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion
Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis
Biological versus chronological ovarian age:implications for assisted reproductive technology
<p>Abstract</p> <p>Background</p> <p>Women have been able to delay childbearing since effective contraception became available in the 1960s. However, fertility decreases with increasing maternal age. A slow but steady decrease in fertility is observed in women aged between 30 and 35 years, which is followed by an accelerated decline among women aged over 35 years. A combination of delayed childbearing and reduced fecundity with increasing age has resulted in an increased number and proportion of women of greater than or equal to 35 years of age seeking assisted reproductive technology (ART) treatment.</p> <p>Methods</p> <p>Literature searches supplemented with the authors' knowledge.</p> <p>Results</p> <p>Despite major advances in medical technology, there is currently no ART treatment strategy that can fully compensate for the natural decline in fertility with increasing female age. Although chronological age is the most important predictor of ovarian response to follicle-stimulating hormone, the rate of reproductive ageing and ovarian sensitivity to gonadotrophins varies considerably among individuals. Both environmental and genetic factors contribute to depletion of the ovarian oocyte pool and reduction in oocyte quality. Thus, biological and chronological ovarian age are not always equivalent. Furthermore, biological age is more important than chronological age in predicting the outcome of ART. As older patients present increasingly for ART treatment, it will become more important to critically assess prognosis, counsel appropriately and optimize treatment strategies. Several genetic markers and biomarkers (such as anti-Müllerian hormone and the antral follicle count) are emerging that can identify women with accelerated biological ovarian ageing. Potential strategies for improving ovarian response include the use of luteinizing hormone (LH) and growth hormone (GH). When endogenous LH levels are heavily suppressed by gonadotrophin-releasing hormone analogues, LH supplementation may help to optimize treatment outcomes for women with biologically older ovaries. Exogenous GH may improve oocyte development and counteract the age-related decline of oocyte quality. The effects of GH may be mediated by insulin-like growth factor-I, which works synergistically with follicle-stimulating hormone on granulosa and theca cells.</p> <p>Conclusion</p> <p>Patients with biologically older ovaries may benefit from a tailored approach based on individual patient characteristics. Among the most promising adjuvant therapies for improving ART outcomes in women of advanced reproductive age are the administration of exogenous LH or GH.</p
- …