59 research outputs found

    Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model

    Get PDF
    An ecosystem-based flow analysis model was used to study carbon transfer from primary production (PP) to mesopelagic fish via three groups of copepods: detritivores that access sinking particles, vertical migrators, and species that reside in the surface ocean. The model was parameterized for 40°S to 40°N in the world ocean such that results can be compared with recent estimates of mesopelagic fish biomass in this latitudinal range, based on field studies using acoustic technologies, of ∼13 Gt (wet weight). Mesopelagic fish production was predicted to be 0.32% of PP which, assuming fish longevity of 1.5 years, gives rise to predicted mesopelagic fish biomass of 2.4 Gt. Model ensembles were run to analyse the uncertainty of this estimate, with results showing predicted biomass >10 Gt in only 8% of the simulations. The work emphasizes the importance of migrating animals in transferring carbon from the surface ocean to the mesopelagic zone. It also highlights how little is known about the physiological ecology of mesopelagic fish, trophic pathways within the mesopelagic food web, and how these link to PP in the surface ocean. A deeper understanding of these interacting factors is required before the potential for utilizing mesopelagic fish as a harvestable resource can be robustly assessed

    High export via small particles before the onset of the North Atlantic spring bloom

    Get PDF
    Sinking organic matter in the North Atlantic Ocean transfers 1-3 Gt carbon year?1 from the surface ocean to the interior. The majority of this exported material is thought to be in form of large, rapidly sinking particles that aggregate during or after the spring phytoplankton bloom. However, recent work has suggested that intermittent water column stratification resulting in the termination of deep convection can isolate phytoplankton from the euphotic zone, leading to export of small particles. We present depth profiles of large (>0.1mm equivalent spherical diameter, ESD) and small (300m depth, leading to deep mixing of particles as deep as 600m. Subsequent re-stratification could trap these particles at depth and lead to high particle fluxes at depth without the need for aggregation (‘mixed layer pump'). Overall we suggest that pre-bloom fluxes to the mesopelagic are significant, and the role of small sinking particles requires careful consideration

    High export via small particles before the onset of the North Atlantic spring bloom

    No full text
    Sinking organic matter in the North Atlantic Ocean transfers 1-3 Gt carbon year?1 from the surface ocean to the interior. The majority of this exported material is thought to be in form of large, rapidly sinking particles that aggregate during or after the spring phytoplankton bloom. However, recent work has suggested that intermittent water column stratification resulting in the termination of deep convection can isolate phytoplankton from the euphotic zone, leading to export of small particles. We present depth profiles of large (&gt;0.1mm equivalent spherical diameter, ESD) and small (&lt;0.1mm ESD) sinking particle concentrations and fluxes prior to the spring bloom at two contrasting sites in the North Atlantic (61°30N, 11°00W and 62°50N, 02°30W) derived from the Marine Snow Catcher and the Video Plankton Recorder. The downward flux of organic carbon via small particles ranged from 23-186 mg C m?2 d?1, often constituting the bulk of the total particulate organic carbon flux. We propose that these rates were driven by two different mechanisms: In the Norwegian Basin, small sinking particles likely reached the upper mesopelagic by disaggregation of larger, faster sinking particles. In the Iceland Basin, a storm deepened the mixed layer to &gt;300m depth, leading to deep mixing of particles as deep as 600m. Subsequent re-stratification could trap these particles at depth and lead to high particle fluxes at depth without the need for aggregation (‘mixed layer pump'). Overall we suggest that pre-bloom fluxes to the mesopelagic are significant, and the role of small sinking particles requires careful consideration. <br/

    Deriving High-Precision Radial Velocities

    Full text link
    This chapter describes briefly the key aspects behind the derivation of precise radial velocities. I start by defining radial velocity precision in the context of astrophysics in general and exoplanet searches in particular. Next I discuss the different basic elements that constitute a spectrograph, and how these elements and overall technical choices impact on the derived radial velocity precision. Then I go on to discuss the different wavelength calibration and radial velocity calculation techniques, and how these are intimately related to the spectrograph's properties. I conclude by presenting some interesting examples of planets detected through radial velocity, and some of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Cyber security fear appeals:unexpectedly complicated

    Get PDF
    Cyber security researchers are starting to experiment with fear appeals, with a wide variety of designs and reported efficaciousness. This makes it hard to derive recommendations for designing and deploying these interventions. We thus reviewed the wider fear appeal literature to arrive at a set of guidelines to assist cyber security researchers. Our review revealed a degree of dissent about whether or not fear appeals are indeed helpful and advisable. Our review also revealed a wide range of fear appeal experimental designs, in both cyber and other domains, which confirms the need for some standardized guidelines to inform practice in this respect. We propose a protocol for carrying out fear appeal experiments, and we review a sample of cyber security fear appeal studies, via this lens, to provide a snapshot of the current state of play. We hope the proposed experimental protocol will prove helpful to those who wish to engage in future cyber security fear appeal research

    Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015)

    Get PDF
    Coccolithophores are key components of phytoplankton communities, exerting a critical impact on the global carbon cycle and the Earth’s climate through the production of coccoliths made of calcium carbonate (calcite) and bioactive gases. Microzooplankton grazing is an important mortality factor in coccolithophore blooms, however little is currently known regarding the mortality (or growth) rates within non-bloom populations. Measurements of coccolithophore calcite production (CP) and dilution experiments to determine microzooplankton (≤63 µm) grazing rates were made during a spring cruise (April 2015) at the Central Celtic Sea (CCS), shelf edge (CS2), and within an adjacent April bloom of the coccolithophore Emiliania huxleyi at station J2. CP at CCS ranged from 10.4 to 40.4 µmol C m−3 d−1 and peaked at the height of the spring phytoplankton bloom (peak chlorophyll-a concentrations ∼6 mg m−3). Cell normalised calcification rates declined from ∼1.7 to ∼0.2 pmol C cell−1 d−1, accompanied by a shift from a mixed coccolithophore species community to one dominated by the more lightly calcified species E. huxleyi and Calciopappus caudatus. At the CCS, coccolithophore abundance increased from 6 to 94 cells mL−1, with net growth rates ranging from 0.06 to 0.21 d−1 from the 4th to the 28th April. Estimates of intrinsic growth and grazing rates from dilution experiments, at the CCS ranged from 0.01 to 0.86 d−1 and from 0.01 to 1.32 d−1, respectively, which resulted in variable net growth rates during April. Microzooplankton grazers consumed 59 to >100% of daily calcite production at the CCS. Within the E. huxleyi bloom a maximum density of 1986 cells mL−1 was recorded, along with CP rates of 6000 µmol C m−3 d−1 and an intrinsic growth rate of 0.29 d−1, with ∼80% of daily calcite production being consumed. Our results show that microzooplankton can exert strong top-down control on both bloom and non-bloom coccolithophore populations, grazing over 60% of daily growth (and calcite production). The fate of consumed calcite is unclear, but may be lost either through dissolution in acidic food vacuoles, and subsequent release as CO2, or export to the seabed after incorporation into small faecal pellets. With such high microzooplankton-mediated mortality losses, the fate of grazed calcite is clearly a high priority research direction

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm

    Nutritional regulation of egg production of Calanus Finmarchicus in the North Atlantic

    Get PDF
    Ship-board experiments in the North Atlantic were used to study how food quality influences the egg production of Calanus finmarchicus feeding on natural planktonic diets. Food quality was expressed in terms of carbon (C), nitrogen (N), and the essential fatty acids eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)). Five consecutive 24 hr bottle incubations were conducted in April and July/August 2002 under in situ conditions to determine egg production rates and the ingested quantities of C, N, EPA and DHA. Biomass contributions towards growth were determined and the biochemical composition of the eggs was examined. In order to accurately determine ingestion rates, a method to account for microzooplankton grazing in particle removal experiments was developed.Balanced physiological budgets were compiled for C. finmarchicus in both seasons. The input terms of these budgets consisted of ingestion and the use of biomass, and the outputs were growth, respiration, excretion and egestion. Respiration and excretion were not determined experimentally, and were therefore determined by mass balance and compared to literature-derived values.In April, close agreement between literature- and mass balance-derived rates of respiration and excretion demonstrated that the experimentally determined components of the budget were accurate. Ingestion rates were low, and &gt; 80 % of the C utilised was derived internally from somatic biomass. The absence of storage fatty acids and the low C:N ratio (~ 4 µg µg-1) of the biomass lost from the females indicated that these animals had been catabolising structural protein and were close to exhaustion. This suggests that when food is scarce, C. finmarchicus adopts a semelparous reproductive strategy. In July/August, the observed growth exceeded the estimated ingestion rates. This shortfall was possibly provided by cannibalising eggs.Assuming that EPA and DHA were used with high efficiency (0.9), the stoichiometric analysis predicted that these compounds were non-limiting in April. Using typical maximum growth efficiencies for C (&lt; 0.6) and N (0.4), the former was predicted to be limiting because the biomass utilised was rich in N, EPA and DHA relative to the demand for C
    • …
    corecore