20 research outputs found

    Frequency of D222G and Q223R Hemagglutinin Mutants of Pandemic (H1N1) 2009 Influenza Virus in Japan between 2009 and 2010

    Get PDF
    BACKGROUND: In April 2009, a novel swine-derived influenza A virus (H1N1pdm) emerged and rapidly spread around the world, including Japan. It has been suggested that the virus can bind to both 2,3- and 2,6-linked sialic acid receptors in infected mammals, in contrast to contemporary seasonal H1N1 viruses, which have a predilection for 2,6-linked sialic acid. METHODS/RESULTS: To elucidate the existence and transmissibility of α2,3 sialic acid-specific viruses in H1N1pdm, amino acid substitutions within viral hemagglutinin molecules were investigated, especially D187E, D222G, and Q223R, which are related to a shift from human to avian receptor specificity. Samples from individuals infected during the first and second waves of the outbreak in Japan were examined using a high-throughput sequencing approach. In May 2009, three specimens from mild cases showed D222G and/or Q223R substitutions in a minor subpopulation of viruses infecting these individuals. However, the substitutions almost disappeared in the samples from five mild cases in December 2010. The D187E substitution was not widespread in specimens, even in May 2009. CONCLUSIONS: These results suggest that α2,3 sialic acid-specific viruses, including G222 and R223, existed in humans as a minor population in the early phase of the pandemic, and that D222 and Q223 became more dominant through human-to-human transmission during the first and second waves of the epidemic. These results are consistent with the low substitution rates identified in seasonal H1N1 viruses in 2008

    Whole-genome analyses of extended-spectrum or AmpC β-lactamase-producing Escherichia coli isolates from companion dogs in Japan.

    No full text
    The emergence and global spread of extended-spectrum or AmpC β-lactamase (ESBL/AmpC)-producing Enterobacteriaceae in companion animals have led to the hypothesis that companion animals might be reservoirs for cross-species transmission because of their close contact with humans. However, current knowledge in this field is limited; therefore, the role of companion animals in cross-species transmission remains to be elucidated. Herein, we studied ESBL/AmpC-producing Enterobacteriaceae, Escherichia coli in particular, isolated from extraintestinal sites and feces of companion dogs. Whole-genome sequencing analysis revealed that (i) extraintestinal E. coli isolates were most closely related to those isolated from feces from the same dog, (ii) chromosomal sequences in the ST131/C1-M27 clade isolated from companion dogs were highly similar to those in the ST131/C1-M27 clade of human origin, (iii) certain plasmids, such as IncFII/pMLST F1:A2:B20/blaCTX-M-27, IncI1/pMLST16/blaCTX-M-15, or IncI1/blaCMY-2 from dog-derived E. coli isolates, shared high homology with those from several human-derived Enterobacteriaceae, (iv) chromosomal blaCTX-M-14 was identified in the ST38 isolate from a companion dog, and (v) eight out of 14 tested ESBL/AmpC-producing E. coli isolates (i.e., ST131, ST68, ST405, and ST998) belonged to the human extraintestinal pathogenic E. coli (ExPEC) group. All of the bla-coding plasmids that were sequenced genome-wide were capable of horizontal transfer. These results suggest that companion dogs can spread ESBL/AmpC-producing ExPEC via their feces. Furthermore, at least some ESBL/AmpC-producing ExPECs and bla-coding plasmids can be transmitted between humans and companion dogs. Thus, companion dogs can act as an important reservoir for ESBL/AmpC-producing E. coli in the community

    Emerging Antigenic Variants at the Antigenic Site Sb in Pandemic A(H1N1)2009 Influenza Virus in Japan Detected by a Human Monoclonal Antibody

    Get PDF
    <div><p>The swine-origin pandemic A(H1N1)2009 virus, A(H1N1)pdm09, is still circulating in parts of the human population. To monitor variants that may escape from vaccination specificity, antigenic characterization of circulating viruses is important. In this study, a hybridoma clone producing human monoclonal antibody against A(H1N1)pdm09, designated 5E4, was prepared using peripheral lymphocytes from a vaccinated volunteer. The 5E4 showed viral neutralization activity and inhibited hemagglutination. 5E4 escape mutants harbored amino acid substitutions (A189T and D190E) in the hemagglutinin (HA) protein, suggesting that 5E4 recognized the antigenic site Sb in the HA protein. To study the diversity of Sb in A(H1N1)pdm09, 58 viral isolates were obtained during the 2009/10 and 2010/11 winter seasons in Osaka, Japan. Hemagglutination-inhibition titers were significantly reduced against 5E4 in the 2010/11 compared with the 2009/10 samples. Viral neutralizing titers were also significantly decreased in the 2010/11 samples. By contrast, isolated samples reacted well to ferret anti-A(H1N1)pdm09 serum from both seasons. Nonsynonymous substitution rates revealed that the variant Sb and Ca2 sequences were being positively selected between 2009/10 and 2010/11. In 7,415 HA protein sequences derived from GenBank, variants in the antigenic sites Sa and Sb increased significantly worldwide from 2009 to 2013. These results indicate that the antigenic variants in Sb are likely to be in global circulation currently.</p> </div

    Alignment of the amino acid sequences including D187E, D222G, and Q223R mutants within the receptor binding site of H1N1pdm hemagglutinin.

    No full text
    <p>E187, G222, and R223 variants obtained from three clinical specimens (#1, #2, and #3) from the first wave of the outbreak. Three clinical nasal swabs were each subjected to RNA extraction, RT-PCR, and TA cloning. More than one hundred clones per specimen were sequenced using conventional Sanger technology. Positions 187, 222, and 223 are shown in bold and are underlined.</p

    The rates of nonsynonymous and synonymous substitutions of the coding region of HA1 derived from viral isolates during 2009 to 2011 in Japan.

    No full text
    <p>(A) The HA1 gene in the 58 viral strains for which data are shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0077892#pone-0077892-g002" target="_blank">Figure 2A</a> was direct-sequenced and aligned with HA1 in A/California/7/2009 as a control. The rates of nonsynonymous and synonymous substitutions of the coding region of the HA1 gene were calculated for each 51 bp window (sliding in 3 bp increments) and are indicated by red and black colors, respectively. Colored bars mark the antigenic sites, as follows: Sa (Sa-1 and -2) in yellow, Sb in blue, Ca1 (Ca1-1, -2 and -3) in cyan, Ca2 (Ca2-1 and -2) in orange and Cb in green. (B) The nonsynonymous (red) and synonymous (black) substitution rates within nine regions of five antigenic sites were also calculated.</p

    Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus

    No full text
    <div><p>Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus.</p> </div
    corecore