20 research outputs found
Broad external validation of a multivariable risk prediction model for gastrointestinal malignancy in iron deficiency anaemia.
BACKGROUND: Using two large datasets from Dorset, we previously reported an internally validated multivariable risk model for predicting the risk of GI malignancy in IDA-the IDIOM score. The aim of this retrospective observational study was to validate the IDIOM model using two independent external datasets. METHODS: The external validation datasets were collected, in a secondary care setting, by different investigators from cohorts in Oxford and Sheffield derived under different circumstances, comprising 1117 and 474 patients with confirmed IDA respectively. The data were anonymised prior to analysis. The predictive performance of the original model was evaluated by estimating measures of calibration, discrimination and clinical utility using the validation datasets. RESULTS: The discrimination of the original model using the external validation data was 70% (95% CI 65, 75) for the Oxford dataset and 70% (95% CI 61, 79) for the Sheffield dataset. The analysis of mean, weak, flexible and across the risk groups' calibration showed no tendency for under or over-estimated risks in the combined validation data. Decision curve analysis demonstrated the clinical value of the IDIOM model with a net benefit that is higher than 'investigate all' and 'investigate no-one' strategies up to a threshold of 18% in the combined validation data, using a risk cut-off of around 1.2% to categorise patients into the very low risk group showed that none of the patients stratified in this risk group proved to have GI cancer on investigation in the validation datasets. CONCLUSION: This external validation exercise has shown promising results for the IDIOM model in predicting the risk of underlying GI malignancy in independent IDA datasets collected in different clinical settings
Recommended from our members
Broad external validation of a multivariable risk prediction model for gastrointestinal malignancy in iron deficiency anaemia.
BACKGROUND: Using two large datasets from Dorset, we previously reported an internally validated multivariable risk model for predicting the risk of GI malignancy in IDA-the IDIOM score. The aim of this retrospective observational study was to validate the IDIOM model using two independent external datasets. METHODS: The external validation datasets were collected, in a secondary care setting, by different investigators from cohorts in Oxford and Sheffield derived under different circumstances, comprising 1117 and 474 patients with confirmed IDA respectively. The data were anonymised prior to analysis. The predictive performance of the original model was evaluated by estimating measures of calibration, discrimination and clinical utility using the validation datasets. RESULTS: The discrimination of the original model using the external validation data was 70% (95% CI 65, 75) for the Oxford dataset and 70% (95% CI 61, 79) for the Sheffield dataset. The analysis of mean, weak, flexible and across the risk groups' calibration showed no tendency for under or over-estimated risks in the combined validation data. Decision curve analysis demonstrated the clinical value of the IDIOM model with a net benefit that is higher than 'investigate all' and 'investigate no-one' strategies up to a threshold of 18% in the combined validation data, using a risk cut-off of around 1.2% to categorise patients into the very low risk group showed that none of the patients stratified in this risk group proved to have GI cancer on investigation in the validation datasets. CONCLUSION: This external validation exercise has shown promising results for the IDIOM model in predicting the risk of underlying GI malignancy in independent IDA datasets collected in different clinical settings
Mortality Among Adults With Cancer Undergoing Chemotherapy or Immunotherapy and Infected With COVID-19
Importance: Large cohorts of patients with active cancers and COVID-19 infection are needed to provide evidence of the association of recent cancer treatment and cancer type with COVID-19 mortality. // Objective: To evaluate whether systemic anticancer treatments (SACTs), tumor subtypes, patient demographic characteristics (age and sex), and comorbidities are associated with COVID-19 mortality. //
Design, Setting, and Participants: The UK Coronavirus Cancer Monitoring Project (UKCCMP) is a prospective cohort study conducted at 69 UK cancer hospitals among adult patients (≥18 years) with an active cancer and a clinical diagnosis of COVID-19. Patients registered from March 18 to August 1, 2020, were included in this analysis. // Exposures: SACT, tumor subtype, patient demographic characteristics (eg, age, sex, body mass index, race and ethnicity, smoking history), and comorbidities were investigated. // Main Outcomes and Measures: The primary end point was all-cause mortality within the primary hospitalization. // Results: Overall, 2515 of 2786 patients registered during the study period were included; 1464 (58%) were men; and the median (IQR) age was 72 (62-80) years. The mortality rate was 38% (966 patients). The data suggest an association between higher mortality in patients with hematological malignant neoplasms irrespective of recent SACT, particularly in those with acute leukemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30-3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04-2.26). Lung cancer was also significantly associated with higher COVID-19–related mortality (OR, 1.58; 95% CI, 1.11-2.25). No association between higher mortality and receiving chemotherapy in the 4 weeks before COVID-19 diagnosis was observed after correcting for the crucial confounders of age, sex, and comorbidities. An association between lower mortality and receiving immunotherapy in the 4 weeks before COVID-19 diagnosis was observed (immunotherapy vs no cancer therapy: OR, 0.52; 95% CI, 0.31-0.86). // Conclusions and Relevance: The findings of this study of patients with active cancer suggest that recent SACT is not associated with inferior outcomes from COVID-19 infection. This has relevance for the care of patients with cancer requiring treatment, particularly in countries experiencing an increase in COVID-19 case numbers. Important differences in outcomes among patients with hematological and lung cancers were observed