433 research outputs found
Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities
Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions
Ultralong-range polyatomic Rydberg molecules formed by a polar perturber
The internal electric field of a Rydberg atom electron can bind a polar
molecule to form a giant ultralong-range stable polyatomic molecule. Such
molecules not only share their properties with Rydberg atoms, they possess huge
permanent electric dipole moments and in addition allow for coherent control of
the polar molecule orientation. In this work, we include additional Rydberg
manifolds which couple to the nearly degenerate set of Rydberg states employed
in [S. T. Rittenhouse and H. R. Sadeghpour, Phys. Rev. Lett. 104, 243002
(2010)]. The coupling of a set of Rydberg states with the
nearly degenerate Rydberg manifolds in alkali metal atoms leads to pronounced
avoided crossings in the Born-Oppenheimer potentials. Ultimately, these avoided
crossings enable the formation of the giant polyatomic Rydberg molecules with
standard two-photon laser photoassociation techniques.Comment: 7 pages, 4 figure
One-dimensional Rydberg Gas in a Magnetoelectric Trap
We study the quantum properties of Rydberg atoms in a magnetic
Ioffe-Pritchard trap which is superimposed by a homogeneous electric field.
Trapped Rydberg atoms can be created in long-lived electronic states exhibiting
a permanent electric dipole moment of several hundred Debye. The resulting
dipole-dipole interaction in conjunction with the radial confinement is
demonstrated to give rise to an effectively one-dimensional ultracold Rydberg
gas with a macroscopic interparticle distance. We derive analytical expressions
for the electric dipole moment and the critical linear density of Rydberg
atoms.Comment: 4 pages, 2 figure
Binary Induced Neutron-Star Compression, Heating, and Collapse
We analyze several aspects of the recently noted neutron star collapse
instability in close binary systems. We utilize (3+1) dimensional and spherical
numerical general relativistic hydrodynamics to study the origin, evolution,
and parametric sensitivity of this instability. We derive the modified
conditions of hydrostatic equilibrium for the stars in the curved space of
quasi-static orbits. We examine the sensitivity of the instability to the
neutron star mass and equation of state. We also estimate limits to the
possible interior heating and associated neutrino luminosity which could be
generated as the stars gradually compress prior to collapse. We show that the
radiative loss in neutrinos from this heating could exceed the power radiated
in gravity waves for several hours prior to collapse. The possibility that the
radiation neutrinos could produce gamma-ray (or other electromagnetic) burst
phenomena is also discussed.Comment: 17 pages, 7 figure
Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers
We study the effect of a strong static homogeneous electric field on the
highly excited rovibrational levels of the LiCs dimer in its electronic ground
state. Our full rovibrational investigation of the system includes the
interaction with the field due to the permanent electric dipole moment and the
polarizability of the molecule. We explore the evolution of the states next to
the dissociation threshold as the field strength is increased. The rotational
and vibrational dynamics are influenced by the field; effects such as
orientation, angular motion hybridization and squeezing of the vibrational
motion are demonstrated and analyzed. The field also induces avoided crossings
causing a strong mixing of the electrically dressed rovibrational states.
Importantly, we show how some of these highly excited levels can be shifted to
the continuum as the field strength is increased, and reversely how two atoms
in the continuum can be brought into a bound state by lowering the electric
field strength.Comment: 10 pages, 4 figure
Instabilities in neutrino-plasma density waves
One examines the interaction and possible resonances between supernova
neutrinos and electron plasma waves. The neutrino phase space distribution and
its boundary regions are analyzed in detail. It is shown that the boundary
regions are too wide to produce non-linear resonant effects. The growth or
damping rates induced by neutrinos are always proportional to the neutrino flux
and .Comment: 9 pages, a few words modified to match PRD publicatio
Formation of Ultracold Heteronuclear Dimers in Electric Fields
The formation of ultracold molecules via stimulated emission followed by a
radiative deexcitation cascade in the presence of a static electric field is
investigated. By analyzing the corresponding cross sections, we demonstrate the
possibility to populate the lowest rotational excitations via photoassociation.
The modification of the radiative cascade due to the electric field leads to
narrow rotational state distributions in the vibrational ground state. External
fields might therefore represent an additional valuable tool towards the
ultimate goal of quantum state preparation of molecules
A Fresh Look at Axions and SN 1987A
We re-examine the very stringent limits on the axion mass based on the
strength and duration of the neutrino signal from SN 1987A, in the light of new
measurements of the axial-vector coupling strength of nucleons, possible
suppression of axion emission due to many-body effects, and additional emission
processes involving pions. The suppression of axion emission due to nucleon
spin fluctuations induced by many-body effects degrades previous limits by a
factor of about 2. Emission processes involving thermal pions can strengthen
the limits by a factor of 3-4 within a perturbative treatment that neglects
saturation of nucleon spin fluctuations. Inclusion of saturation effects,
however, tends to make the limits less dependent on pion abundances. The
resulting axion mass limit also depends on the precise couplings of the axion
and ranges from 0.5x10**(-3) eV to 6x10**(-3) eV.Comment: 32 latex pages, 13 postscript figures included, uses revtex.sty,
submitted to Physical Review
- …