904 research outputs found
MIMAC : Detection of low energy recoils for Dark Matter search
The MIMAC project is based on a matrix of Micro Time Projection Chambers
(micro-TPC) for Dark Matter search, filled with He3 or CF4 and using ionization
and tracks. The first measurement of the energy resolution of this micro-TPC is
presented as well as its low thresholdComment: Dark Energy and Dark Matter conference, Lyon : France (2008
MIMAC : a micro-TPC detector for non-baryonic dark matter search
The MIMAC project is multi-chamber detector for Dark Matter search, aiming at
measuring both track and ionization with a matrix of micromegas micro-TPC
filled with He3 and CF4. Recent experimental results on the first measurements
of the Helium quenching factor at low energy (1 keV recoil) are presented.Comment: 7 pages, Proc of Dark Energy and Dark Matter conference, Lyon :
France (2008
Hilbert Lattice Equations
There are five known classes of lattice equations that hold in every infinite
dimensional Hilbert space underlying quantum systems: generalised
orthoarguesian, Mayet's E_A, Godowski, Mayet-Godowski, and Mayet's E equations.
We obtain a result which opens a possibility that the first two classes
coincide. We devise new algorithms to generate Mayet-Godowski equations that
allow us to prove that the fourth class properly includes the third. An open
problem related to the last class is answered. Finally, we show some new
results on the Godowski lattices characterising the third class of equations.Comment: 24 pages, 3 figure
A project of a new detector for direct Dark Matter search: MACHe3
MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for
direct Dark Matter (DM) search. A cell of superfluid He3 has been developed and
the idea of using a large number of such cells in a high granularity detector
is proposed.This contribution presents, after a brief description of the
superfluid He3 cell, the simulation of the response of different matrix
configurations allowing to define an optimum design as a function of the number
of cells and the volume of each cell. The exclusion plot and the predicted
interaction cross-section for the neutralino as a photino are presented.Comment: 8 pages, 7 figures, Proceedings of Dark Matter 2000 (Marina Del Rey,
Los Angeles, USA, 02/23/2000-02/25/2000
Thigh fat and muscle each contribute to excess cardiometabolic risk in South Asians, independent of visceral adipose tissue.
OBJECTIVE: To compare fat distribution and associations between fat depots and cardiometabolic traits in South Asians and Europeans.
METHODS: Five hundred and fourteen South Asians and 669 Europeans, aged 56-86. Questionnaires, record review, blood testing, and coronary artery calcification scores provided diabetes and clinical plus subclinical coronary heart disease (CHD) diagnoses. Abdominal visceral (VAT) and subcutaneous adipose tissue, thigh subcutaneous adipose tissue (TSAT), intermuscular and intramuscular thigh fat and thigh muscle were measured by CT.
RESULTS: Accounting for body size, South Asians had greater VAT and TSAT than Europeans, but less thigh muscle. Associations between depots and disease were stronger in South Asians than Europeans. In multivariable analyses in South Asians, VAT was positively associated with diabetes and CHD, while TSAT and thigh muscle were protective for diabetes, and thigh muscle for CHD. Differences in VAT and thigh muscle only partially explained the excess diabetes and CHD in South Asians versus Europeans. Insulin resistance did not account for the effects of TSAT or thigh muscle.
CONCLUSIONS: Greater VAT and TSAT and lesser thigh muscle in South Asians contributed to ethnic differences in cardiometabolic disease. Effects of TSAT and thigh muscle were independent of insulin resistance
Evidence that conflict regarding size of haemodynamic response to interventricular delay optimization of cardiac resynchronization therapy may arise from differences in how atrioventricular delay is kept constant.
Aims: Whether adjusting interventricular (VV) delay changes haemodynamic efficacy of cardiac resynchronization therapy (CRT) is controversial, with conflicting results. This study addresses whether the convention for keeping atrioventricular (AV) delay constant during VV optimization might explain these conflicts. / Method and results: Twenty-two patients in sinus rhythm with existing CRT underwent VV optimization using non-invasive systolic blood pressure. Interventricular optimization was performed with four methods for keeping the AV delay constant: (i) atrium and left ventricle delay kept constant, (ii) atrium and right ventricle delay kept constant, (iii) time to the first-activated ventricle kept constant, and (iv) time to the second-activated ventricle kept constant. In 11 patients this was performed with AV delay of 120 ms, and in 11 at AV optimum. At AV 120 ms, time to the first ventricular lead (left or right) was the overwhelming determinant of haemodynamics (13.75 mmHg at ±80 ms, P < 0.001) with no significant effect of time to second lead (0.47 mmHg, P = 0.50), P < 0.001 for difference. At AV optimum, time to first ventricular lead again had a larger effect (5.03 mmHg, P < 0.001) than time to second (2.92 mmHg, P = 0.001), P = 0.02 for difference. / Conclusion: Time to first ventricular activation is the overwhelming determinant of circulatory function, regardless of whether this is the left or right ventricular lead. If this is kept constant, the effect of changing time to the second ventricle is small or nil, and is not beneficial. In practice, it may be advisable to leave VV delay at zero. Specifying how AV delay is kept fixed might make future VV delay research more enlightening
Electron - nuclear recoil discrimination by pulse shape analysis
In the framework of the ``ULTIMA'' project, we use ultra cold superfluid 3He
bolometers for the direct detection of single particle events, aimed for a
future use as a dark matter detector. One parameter of the pulse shape observed
after such an event is the thermalization time constant. Until now it was
believed that this parameter only depends on geometrical factors and superfluid
3He properties, and that it is independent of the nature of the incident
particles. In this report we show new results which demonstrate that a
difference for muon- and neutron events, as well as events simulated by heater
pulses exist. The possibility to use this difference for event discrimination
in a future dark matter detector will be discussed.Comment: Proseedings of QFS 2007, Kazan, Russia; 8 pages, 4 figures. Submited
to J. Low Temp. Phy
Three-dimensional track reconstruction for directional Dark Matter detection
Directional detection of Dark Matter is a promising search strategy. However,
to perform such detection, a given set of parameters has to be retrieved from
the recoiling tracks : direction, sense and position in the detector volume. In
order to optimize the track reconstruction and to fully exploit the data of
forthcoming directional detectors, we present a likelihood method dedicated to
3D track reconstruction. This new analysis method is applied to the MIMAC
detector. It requires a full simulation of track measurements in order to
compare real tracks to simulated ones. We conclude that a good spatial
resolution can be achieved, i.e. sub-mm in the anode plane and cm along the
drift axis. This opens the possibility to perform a fiducialization of
directional detectors. The angular resolution is shown to range between
20 to 80, depending on the recoil energy, which is however
enough to achieve a high significance discovery of Dark Matter. On the
contrary, we show that sense recognition capability of directional detectors
depends strongly on the recoil energy and the drift distance, with small
efficiency values (50%-70%). We suggest not to consider this information either
for exclusion or discovery of Dark Matter for recoils below 100 keV and then to
focus on axial directional data.Comment: 27 pages, 20 figure
Probing neutralino dark matter in the MSSM & the NMSSM with directional detection
We investigate the capability of directional detectors to probe neutralino
dark matter in the Minimal Supersymmetric Standard Model and the
Next-to-Minimal Supersymmetric Standard Model with parameters defined at the
weak scale. We show that directional detectors such as the future MIMAC
detector will probe spin dependent dark matter scattering on nucleons that are
beyond the reach of current spin independent detectors. The complementarity
between indirect searches, in particular using gamma rays from dwarf spheroidal
galaxies, spin dependent and spin independent direct search techniques is
emphasized. We comment on the impact of the negative results on squark searches
at the LHC. Finally, we investigate how the fundamental parameters of the
models can be constrained in the event of a dark matter signal.Comment: 21 pages, 16 figure
- …