44,618 research outputs found
The Formation of Galaxy Disks
We present a new set of multi-million particle SPH simulations of the
formation of disk dominated galaxies in a cosmological context. Some of these
galaxies are higher resolution versions of the models already described in
Governato et al (2007). To correctly compare simulations with observations we
create artificial images of our simulations and from them measure photometric
Bulge to Disk (B/D) ratios and disk scale lengths. We show how feedback and
high force and mass resolution are necessary ingredients to form galaxies that
have flatter rotation curves, larger I band disk scale lengths and smaller B/D
ratios. A new simulated disk galaxy has an I-band disk scale length of 9.2 kpc
and a B/D flux ratio of 0.64 (face on, dust reddened).Comment: To appear in proceedings of "Formation and Evolution of Galaxy
Disks", Rome, October 2007, Eds. J.G. Funes, S.J. and E.M. Corsini. Bigger
figures than in printed versio
Fire extinguishant materials
Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred
Birth of massive black hole binaries
If massive black holes (BHs) are ubiquitous in galaxies and galaxies
experience multiple mergers during their cosmic assembly, then BH binaries
should be common albeit temporary features of most galactic bulges.
Observationally, the paucity of active BH pairs points toward binary lifetimes
far shorter than the Hubble time, indicating rapid inspiral of the BHs down to
the domain where gravitational waves lead to their coalescence. Here, we review
a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers
that underscore the vital role played by a cool, gaseous component in promoting
the rapid formation of the BH binary. The BH binary is found to reside at the
center of a massive self-gravitating nuclear disc resulting from the collision
of the two gaseous discs present in the mother galaxies. Hardening by
gravitational torques against gas in this grand disc is found to continue down
to sub-parsec scales. The eccentricity decreases with time to zero and when the
binary is circular, accretion sets in around the two BHs. When this occurs,
each BH is endowed with it own small-size (< 0.01 pc) accretion disc comprising
a few percent of the BH mass. Double AGN activity is expected to occur on an
estimated timescale of < 1 Myr. The double nuclear point-like sources that may
appear have typical separation of < 10 pc, and are likely to be embedded in the
still ongoing starburst. We note that a potential threat of binary stalling, in
a gaseous environment, may come from radiation and/or mechanical energy
injections by the BHs. Only short-lived or sub-Eddington accretion episodes can
guarantee the persistence of a dense cool gas structure around the binary
necessary for continuing BH inspiral.Comment: To appear in "2007 STScI Spring Symposium: Black Holes", eds. M.
Livio & A. M. Koekemoer, Cambridge University Press, 25 pages, 12 figure
Type I interferons in tuberculosis: Foe and occasionally friend
Tuberculosis remains one of the leading causes of mortality worldwide, and, despite its clinical significance, there are still significant gaps in our understanding of pathogenic and protective mechanisms triggered by Mycobacterium tuberculosis infection. Type I interferons (IFN) regulate a broad family of genes that either stimulate or inhibit immune function, having both host-protective and detrimental effects, and exhibit well-characterized antiviral activity. Transcriptional studies have uncovered a potential deleterious role for type I IFN in active tuberculosis. Since then, additional studies in human tuberculosis and experimental mouse models of M. tuberculosis infection support the concept that type I IFN promotes both bacterial expansion and disease pathogenesis. More recently, studies in a different setting have suggested a putative protective role for type I IFN. In this study, we discuss the mechanistic and contextual factors that determine the detrimental versus beneficial outcomes of type I IFN induction during M. tuberculosis infection, from human disease to experimental mouse models of tuberculosis
Detection of HIV-1 infection in dried blood spots from a 12-year-old ABO bedside test card
Background and Objectives: We tested dried blood from an ABO bedside test card which had been stored at room temperature for 12 years, to prove that a patient with HIV-1 infection had been infected by blood transfusion. Materials and Methods: Immunoblots for HIV-1 antibodies and threefold PCRs with half-nested primers for the HIV-1 integrase gene were done with eluates from the dried blood spots. Results: HIV-1 antibodies and HIV-1 DNA could be detected in the sample from one unit of blood, but not from the two other units or from the recipient before transfusion. Conclusion: Further studies should be done on the validity of stored dried blood as an alternative to the storage of frozen donor serum for several years for `look-back' studies
Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary
The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified
The stellar structure and kinematics of dwarf spheroidal galaxies formed by tidal stirring
Using high-resolution N-body simulations we study the stellar properties of
dwarf spheroidal galaxies resulting from the tidally induced morphological
transformation of disky dwarfs on a cosmologically motivated eccentric orbit
around the Milky Way. Dwarf galaxy models initially consist of an exponential
stellar disk embedded in an extended spherical dark matter halo. Depending on
the initial orientation of the disk with respect to the orbital plane,
different final configurations are obtained. The least evolved dwarf is
triaxial and retains a significant amount of rotation. The more evolved dwarfs
are prolate spheroids with little rotation. We show that the final density
distribution of stars can be approximated by a simple modification of the
Plummer law. The kinematics of the dwarfs is significantly different depending
on the line of sight which has important implications for mapping the observed
stellar velocity dispersions of dwarfs to subhalo circular velocities. When the
dwarfs are observed along the long axis, the measured velocity dispersion is
higher and decreases faster with radius. In the case where rotation is
significant, when viewed perpendicular to the long axis, the effect of minor
axis rotation is detected, as expected for triaxial systems. We model the
velocity dispersion profiles and rotation curves of the dwarfs by solving the
Jeans equations for spherical and axisymmetric systems and adjusting different
sets of free parameters. We find that the mass is typically overestimated when
the dwarf is seen along the long axis and underestimated when the observation
is along the short or intermediate axis. The effect of non-sphericity cannot
however bias the inferred mass by more than 60 percent in either direction,
even for the most strongly stripped dwarf which is close to disruption.Comment: 17 pages, 15 figures, revised version accepted for publication in Ap
Virtual image out-the-window display system study. Volume 2 - Appendix
Virtual image out-the-window display system imaging techniques and simulation devices - appendices containing background materia
- …
