1,689 research outputs found

    Angular momentum transport and disk morphology in SPH simulations of galaxy formation

    Full text link
    We perform controlled N-Body/SPH simulations of disk galaxy formation by cooling a rotating gaseous mass distribution inside equilibrium cuspy spherical and triaxial dark matter halos. We systematically study the angular momentum transport and the disk morphology as we increase the number of dark matter and gas particles from 10^4 to 10^6, and decrease the gravitational softening from 2 kpc to 50 parsecs. The angular momentum transport, disk morphology and radial profiles depend sensitively on force and mass resolution. At low resolution, similar to that used in most current cosmological simulations, the cold gas component has lost half of its initial angular momentum via different mechanisms. The angular momentum is transferred primarily to the hot halo component, by resolution-dependent hydrodynamical and gravitational torques, the latter arising from asymmetries in the mass distribution. In addition, disk-particles can lose angular momentum while they are still in the hot phase by artificial viscosity. In the central disk, particles can transfer away over 99% of their initial angular momentum due to spiral structure and/or the presence of a central bar. The strength of this transport also depends on force and mass resolution - large softening will suppress the bar instability, low mass resolution enhances the spiral structure. This complex interplay between resolution and angular momentum transfer highlights the complexity of simulations of galaxy formation even in isolated haloes. With 10^6 gas and dark matter particles, disk particles lose only 10-20% of their original angular momentum, yet we are unable to produce pure exponential profiles.Comment: 17 pages, 16 figures, MNRAS accepted. Minor changes in response to referee comments. High resolution version of the paper can be found at http://krone.physik.unizh.ch/~tkaufman/papers.htm

    Electronic Structure Shift of Deep Nanoscale Silicon by SiO2_2- vs. Si3_3N4_4-Embedding as Alternative to Impurity Doping

    Full text link
    Conventional impurity doping of deep nanoscale silicon (dns-Si) used in ultra large scale integration (ULSI) faces serious challenges below the 14 nm technology node. We report on a new fundamental effect in theory and experiment, namely the electronic structure of dns-Si experiencing energy offsets of ca. 1 eV as a function of SiO2_2- vs. Si3_3N4_4-embedding with a few monolayers (MLs). An interface charge transfer (ICT) from dns-Si specific to the anion type of the dielectric is at the core of this effect and arguably nested in quantum-chemical properties of oxygen (O) and nitrogen (N) vs. Si. We investigate the size up to which this energy offset defines the electronic structure of dns-Si by density functional theory (DFT), considering interface orientation, embedding layer thickness, and approximants featuring two Si nanocrystals (NCs); one embedded in SiO2_2 and the other in Si3_3N4_4. Working with synchrotron ultraviolet photoelectron spectroscopy (UPS), we use SiO2_2- vs. Si3_3N4_4-embedded Si nanowells (NWells) to obtain their energy of the top valence band states. These results confirm our theoretical findings and gauge an analytic model for projecting maximum dns-Si sizes for NCs, nanowires (NWires) and NWells where the energy offset reaches full scale, yielding to a clear preference for electrons or holes as majority carriers in dns-Si. Our findings can replace impurity doping for n/p-type dns-Si as used in ultra-low power electronics and ULSI, eliminating dopant-related issues such as inelastic carrier scattering, thermal ionization, clustering, out-diffusion and defect generation. As far as majority carrier preference is concerned, the elimination of those issues effectively shifts the lower size limit of Si-based ULSI devices to the crystalization limit of Si of ca. 1.5 nm and enables them to work also under cryogenic conditions.Comment: 14 pages, 17 Figures with a total 44 graph

    Massive Black Hole Recoil in High Resolution Hosts

    Full text link
    The final inspiral and coalescence of a black hole binary can produce highly beamed gravitational wave radiation. To conserve linear momentum, the black hole remnant can recoil with "kick" velocity as high as 4000 km/s. We present two sets of full N-body simulations of recoiling massive black holes (MBH) in high-resolution, non-axisymmetric potentials. The host to the first set of simulations is the main halo of the Via Lactea I simulation (Diemand et al. 2007). The nature of the resulting orbits is investigated through a numerical model where orbits are integrated assuming an evolving, triaxial NFW potential, and dynamical friction is calculated directly from the velocity dispersion along the major axes of the main halo of Via Lactea I. By comparing the triaxial case to a spherical model, we find that the wandering time spent by the MBH is significantly increased due to the asphericity of the halo. For kicks larger than 200 km/s, the remnant MBH does not return to the inner 200 pc within 1 Gyr, a timescale an order of magnitude larger than the upper limit of the estimated QSO lifetime. The second set of simulations is run using the outcome of a high-resolution gas-rich merger (Mayer et al. 2007) as host potential. In this case, a recoil velocity of 500 km/s cannot remove the MBH from the nuclear region.Comment: 4 pages, 4 figures. Proceedings of the conference Galactic & Stellar Dynamics In the Era of High Resolution Survey

    Gravitational instability in binary protoplanetary discs: new constraints on giant planet formation

    Get PDF
    We use high-resolution three-dimensional smoothed particle hydrodynamic (SPH) simulations to study the evolution of self-gravitating binary protoplanetary discs. Heating by shocks and cooling is included. We consider different orbital separations and masses of the discs. Massive discs (M∼ 0.1 M⊙) that fragment in isolation as a result of gravitational instability develop only transient overdensities in binary systems with a separation of about 60 au. This is true even when the cooling time is significantly shorter than the orbital time because efficient heating owing to strong tidally induced spiral shocks dominates. The resulting temperatures, above 200 K, would vaporize water ice in the outer disc, posing a problem even for the other model of giant planet formation, core accretion. Light discs (M∼ 0.01 M⊙) do not fragment but remain cold because their low self-gravity inhibits strong shocks. Core accretion would not be hampered in them. At separations of about 120 au, tidally induced spiral shocks weaken significantly and fragmentation occurs similarly to isolated systems. If disc instability is the main formation mechanism for giant planets, ongoing surveys targeting binary systems should find considerably fewer planets in systems with separations below 100 a

    Primordial Earth mantle heterogeneity caused by the Moon-forming giant impact

    Get PDF
    The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earth's mantle preserves ancient (or "primordial") heterogeneity that predates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, the compositional similarity between the Moon and the accessible Earth's mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk composition of the Earth-Moon system may be systematically shifted towards chondritic values.Comment: Comments are welcom
    corecore