65,320 research outputs found
Variability of black hole accretion discs: The cool, thermal disc component
We extend the model of King et al. (2004) for variability in black hole
accretion discs, by taking proper account of the thermal properties of the
disc. Because the degree of variability in the King et al. (2004) model depends
sensitively on the ratio of disc thickness to radius, H/R, it is important to
follow the time-dependence of the local disc structure as the variability
proceeds. In common with previous authors, we develop a one-zone model for the
local disc structure. We agree that radial heat advection plays an important
role in determining the inner disc structure, and also find limit-cycle
behaviour. When the stochastic magnetic dynamo model of King et al. (2004) is
added to these models, we find similar variability behaviour to before.
We are now better placed to put physical constraints on model parameters. In
particular, we find that in order to be consistent with the low degree of
variability seen in the thermal disc component of black hole binaries, we need
to limit the energy density of the poloidal field that can be produced by local
dynamo cells in the disc to less than a few percent of the energy density of
the dynamo field within the disc itself.Comment: 18 pages, 17 figures, accepted by MNRA
Special coatings control temperature of structures
Special coatings in the form of paints that exhibit controlled ratios of sunlight absorptivity to grey-body emissivity control the temperature of structures in space flight. These finishes exhibit good resistance to ultraviolet radiation and do not discolor
Germany's preferences on the freedom of movement provisions of the Ankara Agreement: the Wirtschaftswunder and opportunity and effort of Turkish diplomacy
Why did Germany support provisions on freedom of movement for Turkish workers in the Association
Agreement between the European Economic Community (EEC) and Turkey, which was concluded in
1963? This is puzzling given that Germany was fervently opposed to other common EU measures on
legal economic migration since immigration policy was communitarized by the Amsterdam Treaty in
1999. The papers test two hypotheses. First, that the a positive economic situation induces the
German government to support common EU measures as in periods of strong growth Germany has
more open immigration policies and there is a positive relationship between open national immigration
policies and support for common EU measures. Second, a sending country (or a group of sending
countries) needs to exert diplomatic pressure on the German government in order for it to support
common EU measures on legal economic migration. For this to be successful there need to be two
conditions in place, the sending country must have the opportunity to exert influence, due to strong
historical ties with Germany or being important for geo-political reasons, and frame the need for
common EU measures on legal migration in an effective manner. The hypotheses are confirmed for
the case of Turkey and the Ankara Agreement and are used to assemble a theoretically eclectic and
generally applicable framework able to explain Germany’s support for common EU measures on legal
economic migration
Birth of massive black hole binaries
If massive black holes (BHs) are ubiquitous in galaxies and galaxies
experience multiple mergers during their cosmic assembly, then BH binaries
should be common albeit temporary features of most galactic bulges.
Observationally, the paucity of active BH pairs points toward binary lifetimes
far shorter than the Hubble time, indicating rapid inspiral of the BHs down to
the domain where gravitational waves lead to their coalescence. Here, we review
a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers
that underscore the vital role played by a cool, gaseous component in promoting
the rapid formation of the BH binary. The BH binary is found to reside at the
center of a massive self-gravitating nuclear disc resulting from the collision
of the two gaseous discs present in the mother galaxies. Hardening by
gravitational torques against gas in this grand disc is found to continue down
to sub-parsec scales. The eccentricity decreases with time to zero and when the
binary is circular, accretion sets in around the two BHs. When this occurs,
each BH is endowed with it own small-size (< 0.01 pc) accretion disc comprising
a few percent of the BH mass. Double AGN activity is expected to occur on an
estimated timescale of < 1 Myr. The double nuclear point-like sources that may
appear have typical separation of < 10 pc, and are likely to be embedded in the
still ongoing starburst. We note that a potential threat of binary stalling, in
a gaseous environment, may come from radiation and/or mechanical energy
injections by the BHs. Only short-lived or sub-Eddington accretion episodes can
guarantee the persistence of a dense cool gas structure around the binary
necessary for continuing BH inspiral.Comment: To appear in "2007 STScI Spring Symposium: Black Holes", eds. M.
Livio & A. M. Koekemoer, Cambridge University Press, 25 pages, 12 figure
Kinetics of silicide formation by thin films of V on Si and SiO_2 substrates
The reaction rate of vacuum‐evaporated films of V of the order of 1000 Å thick is investigated by MeV He backscattering spectrometry. On substrates of single‐crystal Si and for anneal times up to several hours in the temperature range 570–650°C, VSi_2 is formed at a linear rate in time. The activation energy of the process is 1.7±0.2 eV. The presence of oxygen in amounts of 10% can significantly decelerate the reaction. On substrates of SiO_2 in the temperature range 730–820°C and anneal times of several hours or less, V_3Si is formed at a square‐root rate in time. The activation energy of this process is 2.0±0.2 eV
Space charge effects in current transport Quarterly status report
Space charge limitations of currents for use in dosimeter
- …
