12 research outputs found

    Acquired bloodstream infection in the intensive care unit: incidence and attributable mortality

    Get PDF
    INTRODUCTION: To estimate the incidence of intensive care unit (ICU)-acquired bloodstream infection (BSI) and its independent effect on hospital mortality. METHODS: We retrospectively studied acquisition of BSI during admissions of >72 hours to adult ICUs from two university-affiliated hospitals. We obtained demographics, illness severity and co-morbidity data from ICU databases and microbiological diagnoses from departmental electronic records. We assessed survival at hospital discharge or at 90 days if still hospitalized. RESULTS: We identified 6339 ICU admissions, 330 of which were complicated by BSI (5.2%). Median time to first positive culture was 7 days (IQR 5-12). Overall mortality was 23.5%, 41.2% in patients with BSI and 22.5% in those without. Patients who developed BSI had higher illness severity at ICU admission (median APACHE III score: 79 vs. 68, P < 0.001). After controlling for illness severity and baseline demographics by Cox proportional-hazard model, BSI remained independently associated with risk of death (hazard ratio from diagnosis 2.89; 95% confidence interval 2.41-3.46; P < 0.001). However, only 5% of the deaths in this model could be attributed to acquired-BSI, equivalent to an absolute decrease in survival of 1% of the total population. When analyzed by microbiological classification, Candida, Staphylococcus aureus and gram-negative bacilli infections were independently associated with increased risk of death. In a sub-group analysis intravascular catheter associated BSI remained associated with significant risk of death (hazard ratio 2.64; 95% confidence interval 1.44-4.83; P = 0.002). CONCLUSIONS: ICU-acquired BSI is associated with greater in-hospital mortality, but complicates only 5% of ICU admissions and its absolute effect on population mortality is limited. These findings have implications for the design and interpretation of clinical trials

    Concurrent Analysis of Nose and Groin Swab Specimens by the IDI-MRSA PCR Assay Is Comparable to Analysis by Individual-Specimen PCR and Routine Culture Assays for Detection of Colonization by Methicillin-Resistant Staphylococcus aureus

    No full text
    The IDI-MRSA assay (Infectio Diagnostic, Inc., Sainte-Foy, Quebec, Canada) with the Smart Cycler II rapid DNA amplification system (Cepheid, Sunnyvale, CA) appears to be sensitive and specific for the rapid detection of nasal colonization by methicillin-resistant Staphylococcus aureus (MRSA). We assessed the sensitivity and specificity of this assay under conditions in which both the nose and cutaneous groin specimens were analyzed together and compared the accuracy of this PCR approach to that when these specimens were tested separately and by culture assays in an inpatient population with known high rates (12 to 15%) of MRSA colonization. Of 211 patients screened, 192 had results assessable by all three methods (agar-broth culture, separate nose and groin IDI-MRSA assay, and combined nose-groin IDI-MRSA assay), with MRSA carriage noted in 31/192 (16.1%), 41/192 (21.4%), and 36/192 (18.8%) patients by each method, respectively. Compared to agar culture results, the sensitivity and specificity of the combined nose-groin IDI-MRSA assay were 88.0% and 91.6%, respectively, whereas when each specimen was processed separately, the sensitivities were 90.0% (nose) and 83.3% (groin) and the specificities were 91.7% (nose) and 90.2% (groin). IDI-MRSA assay of a combined nose-groin specimen appears to have an accuracy similar to that of the current recommended PCR protocol, providing results in a clinically useful time frame, and may represent a more cost-effective approach to using this assay for screening for MRSA colonization

    Risk Factors for New Detection of Vancomycin-Resistant Enterococci in Acute-Care Hospitals That Employ Strict Infection Control Procedures

    No full text
    Accurate assessment of the risk factors for colonization with vancomycin-resistant enterococci (VRE) among high-risk patients is often confounded by nosocomial VRE transmission. We undertook a 15-month prospective cohort study of adults admitted to high-risk units (hematology, renal, transplant, and intensive care) in three teaching hospitals that used identical strict infection control and isolation procedures for VRE to minimize nosocomial spread. Rectal swab specimens for culture were regularly obtained, and the results were compared with patient demographic factors and antibiotic exposure data. Compliance with screening was defined as “optimal” (100% compliance) or “acceptable” (minor protocol violations were allowed, but a negative rectal swab specimen culture was required within 1 week of becoming colonized with VRE). Colonization with VRE was detected in 1.56% (66 of 4,215) of admissions (0.45% at admission and 0.83% after admission; the acquisition time was uncertain for 0.28%), representing 1.91% of patients. No patients developed infection with VRE. The subsequent rate of new acquisition of VRE was 1.4/1,000 patient days. Renal units had the highest rate (3.23/1,000 patient days; 95% confidence interval [CI], 1.54 to 6.77/1,000 patient days). vanB Enterococcus faecium was the most common species (71%), but other species included vanB Enterococcus faecalis (21%), vanA E. faecium (6%), and vanA E. faecalis (2%). The majority of isolates were nonclonal by pulsed-field gel electrophoresis analysis. Multivariate analysis of risk factors in patients with an acceptable screening suggested that being managed by a renal unit (hazard ratio [HR] compared to the results for patients managed in an intensive care unit, 4.6; 95% CI, 1.2 to 17.0 [P = 0.02]) and recent administration of either ticarcillin-clavulanic acid (HR, 3.6; 95% CI, 1.1 to 11.6 [P = 0.03]) or carbapenems (HR, 2.8; 95% CI, 1.0, 8.0 [P = 0.05]), but not vancomycin or broad-spectrum cephalosporins, were associated with acquisition of VRE. The relatively low rates of colonization with VRE, the polyclonal nature of most isolates, and the possible association with the use of broad-spectrum antibiotics are consistent with either the endogenous emergence of VRE or the amplification of previously undetectable colonization with VRE among high-risk patients managed under conditions in which the risk of nosocomial acquisition was minimized

    The etiology of community-acquired pneumonia in Australia: Why penicillin plus doxycycline or a macrolide is the most appropriate therapy

    No full text
    Background. Available data on the etiology of community-acquired pneumonia (CAP) in Australia are very limited. Local treatment guidelines promote the use of combination therapy with agents such as penicillin or amoxycillin combined with either doxycycline or a macrolide. Methods. The Australian CAP Study (ACAPS) was a prospective, multicenter study of 885 episodes of CAP in which all patients underwent detailed assessment for bacterial and viral pathogens (cultures, urinary antigen testing, serological methods, and polymerase chain reaction). Antibiotic agents and relevant clinical outcomes were recorded. Results. The etiology was identified in 404 (45.6%) of 885 episodes, with the most frequent causes being Streptococcus pneumoniae (14%), Mycoplasma pneumoniae (9%), and respiratory viruses (15%; influenza, picornavirus, respiratory syncytial virus, parainfluenza virus, and adenovirus). Antibiotic-resistant pathogens were rare: only 5.4% of patients had an infection for which therapy with penicillin plus doxycycline would potentially fail. Concordance with local antibiotic recommendations was high (82.4%), with the most commonly prescribed regimens being a penicillin plus either doxycycline or a macrolide (55.8%) or ceftriaxone plus either doxycycline or a macrolide (36.8%). The 30-day mortality rate was 5.6% (50 of 885 episodes), and mechanical ventilation or vasopressor support were required in 94 episodes (10.6%). Outcomes were not compromised by receipt of narrowerspectrum ÎČ-lactams, and they did not differ on the basis of whether a pathogen was identified. Conclusions. The vast majority of patients with CAP can be treated successfully with narrow-spectrum ÎČ-lactam treatment, such as penicillin combined with doxycycline or a macrolide. Greater use of such therapy could potentially reduce the emergence of antibiotic resistance among common bacterial pathogens. Members of the study group are listed at the end of the text
    corecore