13 research outputs found

    Perturbation Centrality and Turbine: A Novel Centrality Measure Obtained Using a Versatile Network Dynamics Tool

    Get PDF
    Analysis of network dynamics became a focal point to understand and predict changes of complex systems. Here we introduce Turbine, a generic framework enabling fast simulation of any algorithmically definable dynamics on very large networks. Using a perturbation transmission model inspired by communicating vessels, we define a novel centrality measure: perturbation centrality. Hubs and inter-modular nodes proved to be highly efficient in perturbation propagation. High perturbation centrality nodes of the Met-tRNA synthetase protein structure network were identified as amino acids involved in intra-protein communication by earlier studies. Changes in perturbation centralities of yeast interactome nodes upon various stresses well recapitulated the functional changes of stressed yeast cells. The novelty and usefulness of perturbation centrality was validated in several other model, biological and social networks. The Turbine software and the perturbation centrality measure may provide a large variety of novel options to assess signaling, drug action, environmental and social interventions. The Turbine algorithm is available at: http://www.turbine.linkgroup.huComment: 21 pages, 4 figues, 1 table, 58 references + a Supplement of 52 pages, 10 figures, 9 tables and 39 references; Turbine algorithm is available at: http://www.turbine.linkgroup.h

    The simulation study of recursive ABC method for warehouse management

    No full text
    The paper deals with a complex warehouse simulation to accomplish a competent solution. It belongs to a group of articles where we are constantly trying to explore the use of warehouses and add further extensions. Greater consideration is concentrated on the use of recursive ABC method for warehouse management in extended concept. The aspiration of the simulation study is to prove whether recursive ABC method returns additional benefits in optimizing the warehouse in this case at a warehouse of different sizes. The complete simulation and the mathematical calculations are accomplished in the Witness Lanner simulation program. The goal of this simulation study is to observe a better solution using recursive ABC method in each part of the model multiple times. Both warehouses are established first on the ABC method, secondary are based on the recursion method. The focus is on two very different layouts of warehouses. Further, the simulation study contributes to propositions that can enhance warehouse management and thus decrease costs. The Witness simulation environment is used for modelling and experimenting. All mathematical computations and simulations are evaluated and measured, as well as all settings of input and output values. Description of the proposed simulation experiments and evaluation of achieved results are presented in tables. © 2019, Springer Nature Switzerland AG.Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT7778/2014)]; European Regional Development Fund under the project CEBIATech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/FAI/2017/003

    Population Dynamics of Termites

    No full text

    Termites in Ecosystems

    No full text

    Future Therapeutics in Alzheimer’s Disease: Development Status of BACE Inhibitors

    No full text
    corecore