13,640 research outputs found

    Electron beam chemistry produces high purity metals

    Get PDF
    Application of radiation chemistry for deposition of metals by irradiation of aqueous solutions with high energy electrons is presented. Design of reaction vessel for irradiation of solution is illustrated. Features of radiochemical technique and procedures followed are described

    Use of radiation in preparative chemistry

    Get PDF
    A summary and updating of previous work on the use of radiation chemistry for the preparation of pure materials are presented. Work was chiefly concerned with the reduction of metal salts in solution to the free metal using 2 MeV electrons. Metals deposited from aqueous solution are copper, silver, zinc, cadmium, thallium, tin, lead, antimony, iron, nickel, cobalt, and palladium. Dry organic solvents were evaluated for the deposition of metals based on a study involving deposition of antimony from soltions of antimony (III) chloride. The use of organic liquids for the preparation of anhydrous metal halides is also presented. Reaction mechanisms for both organic liquids and aqueous system are discussed

    IR optical fiber-based noncontact pyrometer for drop tube instrumentation

    Get PDF
    The design of a two color pyrometer with infrared optical fiber bundles for collection of the infrared radiation is described. The pyrometer design is engineered to facilitate its use for measurement of the temperature of small, falling samples in a microgravity materials processing experiment using a 100 meter long drop tube. Because the samples are small and move rapidly through the field of view of the pyrometer, the optical power budget of the detection system is severly limited. Strategies for overcoming this limitation are discussed

    Species Abundance Patterns in Complex Evolutionary Dynamics

    Full text link
    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Preparing potential teachers for the transition from employment to teacher training: an evaluative case study of a Maths Enhancement Course

    Get PDF
    In response to a UK government drive to improve maths teaching in schools, the South West London Maths Enhancement Course (MEC) has been set up though collaboration between three Higher Education institutions (HEIs) to provide an efficient route for non maths graduates in employment to upgrade their subject knowledge and give a smooth transition into teacher training (PGCE). An evaluation of the scheme, measured against Teacher Development Agency (TDA) objectives and success criteria agreed by university staff, involved thematic analysis of focus group discussions and interviews with students and staff during both the MEC and PGCE courses. This has revealed a high level of satisfaction and success related to a number of underlying issues, particularly around student recruitment, curriculum design, peer support and staff collaboration. The model offers an example of practice transferable to a range of programmes aimed at supporting students in the transition between levels and institutions

    Coherent open-loop optimal control of light-harvesting dynamics

    Full text link
    We apply theoretically open-loop quantum optimal control techniques to provide methods for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting complexes under realistic experimental constraints. We demonstrate that optimally shaped laser pulses allow to faithfully prepare the photosystem in specified initial states (such as localized excitation or coherent superposition, i.e. propagating and non-propagating states) and to probe efficiently the dynamics. These results provide a path towards the discrimination of the different transport pathways and to the characterization of environmental properties, enhancing our understanding of the role that coherent processes may play in biological complexes.Comment: 12 pages, 15 figure

    Mutations in the E2 glycoprotein and the 3\u27 untranslated region enhance chikungunya virus virulence in mice

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes debilitating musculoskeletal pain and inflammation and can persist for months to years after acute infection. Although studies of humans and experimentally infected animals suggest that CHIKV infection persists in musculoskeletal tissues, the mechanisms for this remain poorly understood. To evaluate this further, we isolated CHIKV from the serum of persistently infected Rag1 -/- mice at day 28. When inoculated into naive wild-type (WT) mice, this persistently circulating CHIKV strain displayed a capacity for earlier dissemination and greater pathogenicity than the parental virus. Sequence analysis revealed a nonsynonymous mutation in the E2 glycoprotein (E2 K200R) and a deletion within the 3' untranslated region (3'-UTR). The introduction of these changes into the parental virus conferred enhanced virulence in mice, although primary tropism for musculoskeletal tissues was maintained. The E2 K200R mutation was largely responsible for enhanced viral dissemination and pathogenicity, although these effects were augmented by the 3'- UTR deletion. Finally, studies with Irf3/Irf7 -/- and Ifnar1 -/- mice suggest that the E2 K200R mutation enhances viral dissemination from the site of inoculation independently of interferon regulatory factor 3 (IRF3)-, IRF7-, and IFNAR1-mediated responses. As our findings reveal viral determinants of CHIKV dissemination and pathogenicity, their further study should help to elucidate host-virus interactions that determine acute and chronic CHIKV infection

    Phonon density of states and heat capacity of La_(3−x)Te_4

    Get PDF
    The phonon density of states (DOS) of La_(3−x)Te_4 compounds (x=0.0,0.18,0.32) was measured at 300, 520, and 780 K, using inelastic neutron scattering. A significant stiffening of the phonon DOS and a large broadening of features were observed upon introduction of vacancies on La sites (increasing x). Heat-capacity measurements were performed at temperatures 1.85 ≤ T ≤ 1200 K and were analyzed to quantify the contributions of phonons and electrons. The Debye temperature and the electronic coefficient of heat capacity determined from these measurements are consistent with the neutron-scattering results, and with previously reported first-principles calculations. Our results indicate that La vacancies in La_(3−x)Te_4 strongly scatter phonons and this source of scattering appears to be independent of temperature. The stiffening of the phonon DOS induced by the introduction of vacancies is explained in terms of the electronic structure and the change in bonding character. The temperature dependence of the phonon DOS is captured satisfactorily by the quasiharmonic approximation
    corecore