20,286 research outputs found

    Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells.

    Get PDF
    Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following ‘trapping’ within capillary beds of the BBB

    Adsorption of atoms and molecules upon the surface of a single crystal and chemical reactions that take place upon the surface /low energy electron diffraction/ Annual progress report, 1966-1967

    Get PDF
    Low energy electron diffraction research of chemical interactions of gases with single crystal metal surfaces, and gas adsorption on nickel and tungsten surface

    Reflection beam isolator for submillimeter wavelengths

    Get PDF
    Magnetoplasma reflection beam isolators for submillimeter wave use are discussed. The basic configuration used is that of the Kerr transverse magneto-optical effect. Theoretical and experimental data at 337 microns using InSb as a plasma are given

    Hollow-cylinder waveguide isolators for use at millimeter wavelengths

    Get PDF
    A semiconductor waveguide isolator consisting of a hollow column of a semiconductor mounted coaxially is considered in a circular waveguide in a longitudinal dc magnetic field. An elementary and physical analysis based on the excitation of plane waves in the guide and a more rigorous mode matching analysis are presented. These theoretical predictions are compared with experimental results for an InSb isolator at 94GHz and 75 K

    Hydrogen and oxygen on a /110/ nickel surface

    Get PDF
    Hydrogen-oxygen reaction on nickel surface, electron diffraction stud

    Making the HESP work: choices and challenges in Trent

    Get PDF

    Use of LANDSAT-1 data for the detection and mapping of saline seeps in Montana

    Get PDF
    The author has identified the following significant results. April, May, and August are the best times to detect saline seeps. Specific times within these months would be dependent upon weather, phenology, and growth conditions. Saline seeps can be efficiently and accurately mapped, within resolution capabilities, from merged May and August LANDSAT 1 data. Seeps were mapped by detecting salt crusts in the spring and indicator plants in the fall. These indicator plants were kochia, inkweed, and foxtail barley. The total hectares of the mapped saline seeps were calculated and tabulated. Saline seeps less than two hectares in size or that have linear configurations less than 200 meters in width were not mapped using the LANDSAT 1 data. Saline seep signatures developed in the Coffee Creek test site were extended to map saline seeps located outside this area

    Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    Get PDF
    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt

    Functioning of inorganic/organic battery separators in silver-zinc cells

    Get PDF
    The results of three experimental studies related to the inorganic/organic battery separator operating mechanism are described: saponification of the plasticizer, resistivity of the simulated separators, and zincate diffusion through the separators. The inorganic/organic separator appears to be a particular example of a general class of ionic conducting films composed of inorganic fillers and/or substrates bonded together by an organic polymer containing an incompatible plasticizer that may be leached by the electrolyte. The I/O separator functions as a microporous film of varying tortuosity with essentially no specific chemical inhibition to zincate diffusion
    • …
    corecore