2,480 research outputs found

    ChlamyCyc - a comprehensive database and web-portal centered on _Chlamydomonas reinhardtii_

    Get PDF
    *Background* - The unicellular green alga _Chlamydomonas reinhardtii_ is an important eukaryotic model organism for the study of photosynthesis and growth, as well as flagella development and other cellular processes. In the era of high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the whole cellular system of a single organism.
*Results* - In the framework of the German Systems Biology initiative GoFORSYS a pathway/genome database and web-portal for _Chlamydomonas reinhardtii_ (ChlamyCyc) was established, which currently features about 270 metabolic pathways with related genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification.
*Conclusion* - Chlamycyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in _Chlamydomonas reinhardtii_. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de

    Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach

    Full text link
    Absorption spectra of small molecular aggregates (oligomers) are considered. The dipole-dipole interaction between the monomers leads to shifts of the oligomer spectra with respect to the monomer absorption. The line-shapes of monomer as well as oligomer absorption depend strongly on the coupling to vibrational modes. Using a recently developed approach [Roden et. al, PRL 103, 058301] we investigate the length dependence of spectra of one-dimensional aggregates for various values of the interaction strength between the monomers. It is demonstrated, that the present approach is well suited to describe the occurrence of the J- and H-bands

    Cosmological Information in Weak Lensing Peaks

    Full text link
    Recent studies have shown that the number counts of convergence peaks N(kappa) in weak lensing (WL) maps, expected from large forthcoming surveys, can be a useful probe of cosmology. We follow up on this finding, and use a suite of WL convergence maps, obtained from ray-tracing N-body simulations, to study (i) the physical origin of WL peaks with different heights, and (ii) whether the peaks contain information beyond the convergence power spectrum P_ell. In agreement with earlier work, we find that high peaks (with amplitudes >~ 3.5 sigma, where sigma is the r.m.s. of the convergence kappa) are typically dominated by a single massive halo. In contrast, medium-height peaks (~0.5-1.5 sigma) cannot be attributed to a single collapsed dark matter halo, and are instead created by the projection of multiple (typically, 4-8) halos along the line of sight, and by random galaxy shape noise. Nevertheless, these peaks dominate the sensitivity to the cosmological parameters w, sigma_8, and Omega_m. We find that the peak height distribution and its dependence on cosmology differ significantly from predictions in a Gaussian random field. We directly compute the marginalized errors on w, sigma_8, and Omega_m from the N(kappa) + P_ell combination, including redshift tomography with source galaxies at z_s=1 and z_s=2. We find that the N(kappa) + P_ell combination has approximately twice the cosmological sensitivity compared to P_ell alone. These results demonstrate that N(kappa) contains non-Gaussian information complementary to the power spectrum.Comment: 24 pages, 12 figures, 14 tables. Accepted for publication in PRD (version before proofs
    • …
    corecore