research

ChlamyCyc - a comprehensive database and web-portal centered on _Chlamydomonas reinhardtii_

Abstract

*Background* - The unicellular green alga _Chlamydomonas reinhardtii_ is an important eukaryotic model organism for the study of photosynthesis and growth, as well as flagella development and other cellular processes. In the era of high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the whole cellular system of a single organism.
*Results* - In the framework of the German Systems Biology initiative GoFORSYS a pathway/genome database and web-portal for _Chlamydomonas reinhardtii_ (ChlamyCyc) was established, which currently features about 270 metabolic pathways with related genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification.
*Conclusion* - Chlamycyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in _Chlamydomonas reinhardtii_. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de

    Similar works