653 research outputs found

    Brain oscillations differentially encode noxious stimulus intensity and pain intensity

    Get PDF
    Noxious stimuli induce physiological processes which commonly translate into pain. However, under certain conditions, pain intensity can substantially dissociate from stimulus intensity, e.g. during longer-lasting pain in chronic pain syndromes. How stimulus intensity and pain intensity are differentially represented in the human brain is, however, not yet fully understood. We therefore used electroencephalography (EEG) to investigate the cerebral representation of noxious stimulus intensity and pain intensity during 10 min of painful heat stimulation in 39 healthy human participants. Time courses of objective stimulus intensity and subjective pain ratings indicated a dissociation of both measures. EEG data showed that stimulus intensity was encoded by decreases of neuronal oscillations at alpha and beta frequencies in sensorimotor areas. In contrast, pain intensity was encoded by gamma oscillations in the medial prefrontal cortex. Contrasting right versus left hand stimulation revealed that the encoding of stimulus intensity in contralateral sensorimotor areas depended on the stimulation side. In contrast, a conjunction analysis of right and left hand stimulation revealed that the encoding of pain in the medial prefrontal cortex was independent of the side of stimulation. Thus, the translation of noxious stimulus intensity into pain is associated with a change from a spatially specific representation of stimulus intensity by alpha and beta oscillations in sensorimotor areas to a spatially independent representation of pain by gamma oscillations in brain areas related to cognitive and affective-motivational processes. These findings extend the understanding of the brain mechanisms of nociception and pain and their dissociations during longer-lasting pain as a key symptom of chronic pain syndromes

    Prefrontal gamma oscillations encode tonic pain in humans

    Get PDF
    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain

    Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli

    Get PDF
    Pain is a complex phenomenon involving perceptual, motor, and autonomic responses, but how the brain translates noxious stimuli into these different dimensions of pain is unclear. Here, we assessed perceptual, motor, and autonomic responses to brief noxious heat stimuli and recorded brain activity using electroencephalography (EEG) in humans. Multilevel mediation analysis reveals that each pain dimension is subserved by a distinct pattern of EEG responses and, conversely, that each EEG response differentially contributes to the different dimensions of pain. In particular, the translation of noxious stimuli into autonomic and motor responses involved the earliest N1 wave, whereas pain perception was mediated by later N2 and P2 waves. Gamma oscillations mediated motor responses rather than pain perception. These findings represent progress towards a mechanistic understanding of the brain processes translating noxious stimuli into pain and suggest that perceptual, motor, and autonomic dimensions of pain are partially independent rather than serial processes

    Neural oscillations and connectivity characterizing the state of tonic experimental pain in humans

    Get PDF
    Pain is a complex phenomenon that is served by neural oscillations and connectivity involving different brain areas and frequencies. Here, we aimed to systematically and comprehensively assess the pattern of neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. To this end, we applied 10-min heat pain stimuli consecutively to the right and left hand of 39 healthy participants and recorded electroencephalography. We systematically analyzed global and local measures of oscillatory brain activity, connectivity, and graph theory-based network measures during tonic pain and compared them to a nonpainful control condition. Local measures showed suppressions of oscillatory activity at alpha frequencies together with stronger connectivity at alpha and beta frequencies in sensorimotor areas during tonic pain. Furthermore, sensorimotor areas contralateral to stimulation showed significantly increased connectivity to a common area in the medial prefrontal cortex at alpha frequencies. Together, these observations indicate that the state of tonic experimental pain is associated with a sensorimotor-prefrontal network connected at alpha frequencies. These findings represent a step further toward understanding the brain mechanisms underlying long-lasting pain states in health and disease

    Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients

    Get PDF
    Chronic pain is a major health care issue characterized by ongoing pain and a variety of sensory, cognitive, and affective abnormalities. The neural basis of chronic pain is still not completely understood. Previous work has implicated prefrontal brain areas in chronic pain. Furthermore, prefrontal neuronal oscillations at gamma frequencies (60–90 Hz) have been shown to reflect the perceived intensity of longer lasting experimental pain in healthy human participants. In contrast, noxious stimulus intensity has been related to alpha (8–13 Hz) and beta (14–29 Hz) oscillations in sensorimotor areas. However, it is not fully understood how the intensity of ongoing pain as the key symptom of chronic pain is represented in the human brain. Here, we asked 31 chronic back pain patients to continuously rate their ongoing pain while simultaneously recording electroencephalography (EEG). Time–frequency analyses revealed a positive association between ongoing pain intensity and prefrontal beta and gamma oscillations. No association was found between pain and alpha or beta oscillations in sensorimotor areas. These findings indicate that ongoing pain as the key symptom of chronic pain is reflected by neuronal oscillations implicated in the subjective perception of longer lasting pain rather than by neuronal oscillations related to the processing of objective nociceptive input. The findings, thus, support a dissociation of pain intensity from nociceptive processing in chronic back pain patients. Furthermore, although possible confounds by muscle activity have to be taken into account, they might be useful for defining a neurophysiological marker of ongoing pain in the human brain

    Assessment of Osteoporosis in Injured Older Women Admitted to a Safety-Net Level One Trauma Center: A Unique Opportunity to Fulfill an Unmet Need

    Get PDF
    Background. Older trauma patients often undergo computed tomography (CT) as part of the initial work-up. CT imaging can also be used opportunistically to measure bone density and assess osteoporosis. Methods. In this retrospective cohort study, osteoporosis was ascertained from admission CT scans in women aged ≥65 admitted to the ICU for traumatic injury during a 3-year period at a single, safety-net, level 1 trauma center. Osteoporosis was defined by established CT-based criteria of average L1 vertebral body Hounsfield units <110. Evidence of diagnosis and/or treatment of osteoporosis was the primary outcome. Results. The study cohort consisted of 215 women over a 3-year study period, of which 101 (47%) had evidence of osteoporosis by CT scan criteria. There were no differences in injury severity score, hospital length of stay, cost, or discharge disposition between groups with and without evidence of osteoporosis. Only 55 (59%) of the 94 patients with osteoporosis who survived to discharge had a documented osteoporosis diagnosis and/or corresponding evaluation/treatment plan. Conclusion. Nearly half of older women admitted with traumatic injuries had underlying osteoporosis, but 41% had neither clinical recognition of this finding nor a treatment plan for osteoporosis. Admission for traumatic injury is an opportunity to assess osteoporosis, initiate appropriate intervention, and coordinate follow-up care. Trauma and acute care teams should consider assessment of osteoporosis in women who undergo CT imaging and provide a bridge to outpatient services

    Behavioral responses to noxious stimuli shape the perception of pain

    Get PDF
    Pain serves vital protective functions. To fulfill these functions, a noxious stimulus might induce a percept which, in turn, induces a behavioral response. Here, we investigated an alternative view in which behavioral responses do not exclusively depend on but themselves shape perception. We tested this hypothesis in an experiment in which healthy human subjects performed a reaction time task and provided perceptual ratings of noxious and tactile stimuli. A multi-level moderated mediation analysis revealed that behavioral responses are significantly involved in the translation of a stimulus into perception. This involvement was significantly stronger for noxious than for tactile stimuli. These findings show that the influence of behavioral responses on perception is particularly strong for pain which likely reflects the utmost relevance of behavioral responses to protect the body. These observations parallel recent concepts of emotions and entail implications for the understanding and treatment of pain

    Modulating Brain Rhythms of Pain using Transcranial Alternating Current Stimulation (tACS)?

    Get PDF
    Pain protects the body. However, pain can also occur for longer periods without serving protective functions. Such chronic pain conditions are difficult to treat. Thus, a better understanding of the underlying neural mechanisms and new approaches for the treatment of pain are urgently needed. Here, we investigated a causal role of oscillatory brain activity for pain and explored the potential of transcranial alternating current stimulation (tACS) as a new treatment approach for pain. To this end, we investigated whether tACS can modulate pain and pain-related autonomic activity in 29 healthy human participants using a tonic heat pain paradigm as an experimental model of chronic pain. In 6 recording sessions, participants received tACS over prefrontal or somatosensory cortices at alpha or gamma frequencies or sham tACS. During tACS, pain ratings and autonomic responses were collected. TACS did not modulate pain intensity, the stability of pain ratings or the translation of the noxious stimulus into pain. Likewise, tACS did not change autonomic responses. Bayesian statistics further indicated a lack of tACS effects in most conditions. The only exception was alpha tACS over somatosensory cortex where evidence for tACS effects was inconclusive. Taken together, the present study did not find significant tACS effects on tonic experimental pain in healthy human participants. However, considering the conceptual plausibility of using tACS to modulate pain and the urgent need for novel pain treatments, further tACS studies are warranted. Based on the present findings, such studies might apply refined stimulation protocols targeting alpha oscillations in somatosensory cortices

    The Role of Vaccine Coverage within Social Networks in Cholera Vaccine Efficacy

    Get PDF
    Traditional vaccine trial methods have an underlying assumption that the effect of a vaccine is the same throughout the trial area. There are, however, many spatial and behavioral factors that alter the rates of contact among infectious and susceptible individuals and result in different efficacies across a population. We reanalyzed data from a field trial in Bangladesh to ascertain whether there is evidence of indirect protection from cholera vaccines when vaccination rates are high in an individual's social network.We analyzed the first year of surveillance data from a placebo-controlled trial of B subunit-killed whole-cell and killed whole-cell-only oral cholera vaccines in children and adult women in Bangladesh. We calculated whether there was an inverse trend for the relation between the level of vaccine coverage in an individual's social network and the incidence of cholera in individual vaccine recipients or placebo recipients after controlling for potential confounding variables.Using bari-level social network ties, we found incidence rates of cholera among placebo recipients were inversely related to levels of vaccine coverage (5.28 cases per 1000 in the lowest quintile vs 3.27 cases per 1000 in the highest quintile; p = 0.037 for trend). Receipt of vaccine by an individual and the level of vaccine coverage of the individual's social network were independently related to a reduced risk of cholera.Findings indicate that progressively higher levels of vaccine coverage in bari-level social networks can lead to increasing levels of indirect protection of non-vaccinated individuals and could also lead to progressively higher levels of total protection of vaccine recipients
    corecore