28 research outputs found

    No advantage for remembering horizontal over vertical spatial locations learned from a single viewpoint

    Get PDF
    Previous behavioral and neurophysiological research has shown better memory for horizontal than for vertical locations. In these studies, participants navigated toward these locations. In the present study we investigated whether the orientation of the spatial plane per se was responsible for this difference. We thus had participants learn locations visually from a single perspective and retrieve them from multiple viewpoints. In three experiments, participants studied colored tags on a horizontally or vertically oriented board within a virtual room and recalled these locations with different layout orientations (Exp. 1) or from different room-based perspectives (Exps. 2 and 3). All experiments revealed evidence for equal recall performance in horizontal and vertical memory. In addition, the patterns for recall from different test orientations were rather similar. Consequently, our results suggest that memory is qualitatively similar for both vertical and horizontal two-dimensional locations, given that these locations are learned from a single viewpoint. Thus, prior differences in spatial memory may have originated from the structure of the space or the fact that participants navigated through it. Additionally, the strong performance advantages for perspective shifts (Exps. 2 and 3) relative to layout rotations (Exp. 1) suggest that configurational judgments are not only based on memory of the relations between target objects, but also encompass the relations between target objects and the surrounding room—for example, in the form of a memorized view

    Spatial Analysis of Land Cover Determinants of Malaria Incidence in the Ashanti Region, Ghana

    Get PDF
    Malaria belongs to the infectious diseases with the highest morbidity and mortality worldwide. As a vector-borne disease malaria distribution is strongly influenced by environmental factors. The aim of this study was to investigate the association between malaria risk and different land cover classes by using high-resolution multispectral Ikonos images and Poisson regression analyses. The association of malaria incidence with land cover around 12 villages in the Ashanti Region, Ghana, was assessed in 1,988 children <15 years of age. The median malaria incidence was 85.7 per 1,000 inhabitants and year (range 28.4–272.7). Swampy areas and banana/plantain production in the proximity of villages were strong predictors of a high malaria incidence. An increase of 10% of swampy area coverage in the 2 km radius around a village led to a 43% higher incidence (relative risk [RR] = 1.43, p<0.001). Each 10% increase of area with banana/plantain production around a village tripled the risk for malaria (RR = 3.25, p<0.001). An increase in forested area of 10% was associated with a 47% decrease of malaria incidence (RR = 0.53, p = 0.029)

    Visuomotor Cerebellum in Human and Nonhuman Primates

    Get PDF
    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Influence of ubiquitin B+1 expression on mouse brain

    No full text
    Im Rahmen der Arbeit sollte der Einfluss von Ubiquitin B+1 auf das Proteom in Bezug auf die pathologische Relevanz bei der Alzheimer-Krankheit charakterisiert werden. Dafür wurde eine altersabhängige differentielle Analyse des Proteoms im Hippocampus, Cortex und Corpus Striatum von Wildtyp C57BL/6 im Vergleich zu Ubiquitin B+1 transgenen Mäusen durchgeführt. Es konnten 37 differentiell altersabhängig regulierte Proteine im Hippocampus der Ubiquitin B+1 transgenen Mäuse identifiziert werden. Diese Proteine wurden dem Energiemetabolismus, der Calciumhomöostase, der Stressantwort, dem Vesikeltransport und der synaptischen Plastizität zugeordnet. Alle sind wesentlich für die Alzheimer-Krankheit und den Alterungsprozesses, der eine zentrale Rolle bei der Alzheimer-Pathologie spielt. Für detailliertere Einblicke in den Energiemetabolismus wurde eine Aufarbeitung von Mitochondrien etabliert. Des Weiteren wurde der Einfluss von Ubiquitin B+1 auf die Zusammensetzung des Proteasoms analysiert

    miR-129-5p and miR-130a-3p regulate VEGFR-2 expression in sensory and motor neurons during development

    No full text
    The wide-ranging influence of vascular endothelial growth factor (VEGF) within the central (CNS) and peripheral nervous system (PNS), for example through effects on axonal growth or neuronal cell survival, is mainly mediated by VEGF receptor 2 (VEGFR-2). However, the regulation of VEGFR-2 expression during development is not yet well understood. As microRNAs are considered to be key players during neuronal maturation and regenerative processes, we identified the two microRNAs (miRNAs)—miR-129-5p and miR-130a-3p—that may have an impact on VEGFR-2 expression in young and mature sensory and lower motor neurons. The expression level of VEGFR-2 was analyzed by using in situ hybridization, RT-qPCR, Western blot, and immunohistochemistry in developing rats. microRNAs were validated within the spinal cord and dorsal root ganglia. To unveil the molecular impact of our candidate microRNAs, dissociated cell cultures of sensory and lower motor neurons were transfected with mimics and inhibitors. We depicted age-dependent VEGFR-2 expression in sensory and lower motor neurons. In detail, in lower motor neurons, VEGFR-2 expression was significantly reduced during maturation, in conjunction with an increased level of miR-129-5p. In sensory dorsal root ganglia, VEGFR-2 expression increased during maturation and was accompanied by an overexpression of miR-130a-3p. In a second step, the functional significance of these microRNAs with respect to VEGFR-2 expression was proven. Whereas miR-129-5p seems to decrease VEGFR-2 expression in a direct manner in the CNS, miR-130a-3p might indirectly control VEGFR-2 expression in the PNS. A detailed understanding of genetic VEGFR-2 expression control might promote new strategies for the treatment of severe neurological diseases like ischemia or peripheral nerve injury

    Morphological plasticity of emerging purkinje cells in response to exogenous VEGF

    No full text
    Vascular endothelial growth factor (VEGF) is well known as the growth factor with wide-ranging functions even in the central nervous system (CNS). Presently, most attention is given to the investigation of its role in neuronal protection, growth and maturation processes, whereby most effects are mediated through VEGF receptor 2 (VEGFR-2). The purpose of our current study is to provide new insights into the impact of VEGF on immature and mature Purkinje cells (PCs) in accordance with maturity and related receptor expression. Therefore, to expand our knowledge of VEGF effects in PCs development and associated VEGFR-2 expression, we used cultivated organotypic cerebellar slice cultures in immunohistochemical or microinjection studies, followed by confocal laser scanning microscopy (CLSM) and morphometric analysis. Additionally, we incorporated in our study the method of laser microdissection, followed by quantitative polymerase chain reaction (qPCR). For the first time we could show the age-dependent VEGF sensitivity of PCs with the largest promoting effects being on dendritic length and cell soma size in neonatal and juvenile stages. Once mature, PCs were no longer susceptible to VEGF stimulation. Analysis of VEGFR-2 expression revealed its presence in PCs throughout development, which underlined its mediating functions in neuronal cells

    Lower allergen levels in hypoallergenic Curly Horses?

    No full text
    Background:\textbf {Background:} Exposure to horses can cause severe allergic reactions in sensitized individuals. The breed, American Bashkir Curly Horse is categorized as hypoallergenic, primarily due to reports of allergic patients experiencing fewer symptoms while handling this special breed. The possible reasons for this phenomenon could be lower allergen production and/or reduced allergen release into the air because of increased sebum content in their skin and hair compared to other breeds. Therefore, the aim of the current study was to compare different horse breeds in relation to allergen content in hair and airborne dust samples. Methods:\textbf {Methods:} In total, 224 hair samples from 32 different horse breeds were investigated. Personal nasal filters were used to collect airborne dust during the grooming of 20 Curly Horses and 20 Quarter Horses. Quantitative analysis of all samples was performed using two newly developed immunoassays for the detection of horse dander (HD) antigens and the major allergen Equ c 1 and the commercial assay for Equ c 4. Results were analyzed using multiple linear regression models for hair samples and the Mann Whitney U test for airborne samples. Results:\textbf {Results:} Horse antigen and allergen levels differed up to four orders of magnitude between individual animals. Despite enormous variability, levels of HD antigen, Equ c 1 and Equ c 4 in hair were significantly related to the breed and gender combined with the castration status of male animals. Curly Horses had significantly higher concentrations of all three tested parameters compared to the majority of the investigated breeds (medians: 11800 μ\mug/g for HD antigen, 2400 μ\mug/g for Equ c 1, and 258 kU/g for Equ c 4). Tinker Horses, Icelandic Horses and Shetland Ponies were associated with approximately 7-fold reduced levels of HD antigen and Equ c 1, and up to 25-fold reduced levels of Equ c 4 compared to Curly Horses. Compared to mares, stallions displayed increased concentrations of HD antigens, Equ c 1 and Equ c 4 by a factor 2.2, 3.5 and 6.7, respectively. No difference was observed between mares and geldings. No differences in airborne allergen concentrations collected with personal nasal filters during grooming were found between Curly and Quarter Horses. Conclusion:\textbf {Conclusion:} Breed and castration status had a significant influence on the antigen and allergen levels of horse hair. However, these differences were smaller than the wide variability observed among individual horses. Compared to other breeds, Curly Horses were not associated with lower allergen levels in hair and in air samples collected during grooming. Our approach provides no molecular explanation why Curly Horses are considered to be hypoallergenic

    The microRNA miR-375-3p and the tumor suppressor NDRG2 are involved in sporadic amyotrophic lateral sclerosis

    No full text
    Background/Aims:\bf Background/Aims: Amyotrophic lateral sclerosis (ALS) is the most common degenerative motor neuron disease in humans. However, the pathogenesis of ALS is not yet understood. The wobbler mouse is considered as an animal model for the sporadic form of ALS due to its spontaneous mutation in the Vps54 gene. Due to transactivation of NDRG2 by p53, this tumor suppressor might play a functional role in stress induced cell death in wobbler mice as well as ALS patients. Furthermore, deregulated microRNAs are often related to neurodegenerative diseases. Thus, the NDRG2 linked miR-375-3p was of interest for this study. Methods:\bf Methods: Here, we investigated the relevance of NDRG2 and miR-375-3p for the pathomechanism of the motor neuronal degeneration in wobbler mice by investigating expression level via qPCR and Western Blot as well as localization of these molecules in the cervical spinal cord by in situ hybridization, immunostaining and mass spectrometric analysis. Results:\bf Results: We were able to show a differential regulation of the expression of NDRG2 as well as miR-375-3p in the cervical part of the spinal cord of wobbler mice. In addition, for the first time we were able to demonstrate an expression of NDRG2 in motor neurons using different techniques. Conclusion:\bf Conclusion: The present study has shown NDRG2 and miR-375-3p to be promising targets for further research of the pathogenesis of sporadic ALS in the wobbler mouse model. Based on these results and in combination with previous published data we could develop a putative pro-apoptotic mechanism in the spinal cord of the wobbler mouse

    Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research

    No full text
    Cerebrospinal fluid is investigated in biomarker studies for various neurological disorders of the central nervous system due to its proximity to the brain. Currently, only a limited number of biomarkers have been validated in independent studies. The high variability in the protein composition and protein abundance of cerebrospinal fluid between as well as within individuals might be an important reason for this phenomenon. To evaluate this possibility, we investigated the inter- and intraindividual variability in the cerebrospinal fluid proteome globally, with a specific focus on disease biomarkers described in the literature. Cerebrospinal fluid from a longitudinal study group including 12 healthy control subjects was analyzed by label-free quantification (LFQ) via LC-MS/MS. Data were quantified via MaxQuant. Then, the intra- and interindividual variability and the reference change value were calculated for every protein. We identified and quantified 791 proteins, and 216 of these proteins were abundant in all samples and were selected for further analysis. For these proteins, we found an interindividual coefficient of variation of up to 101.5% and an intraindividual coefficient of variation of up to 29.3%. Remarkably, these values were comparably high for both proteins that were published as disease biomarkers and other proteins. Our results support the hypothesis that natural variability greatly impacts cerebrospinal fluid protein biomarkers because high variability can lead to unreliable results. Thus, we suggest controlling the variability of each protein to distinguish between good and bad biomarker candidates, e.g., by utilizing reference change values to improve the process of evaluating potential biomarkers in future studies
    corecore