22,393 research outputs found

    High resolution observations of low contrast phenomena from an Advanced Geosynchronous Platform (AGP)

    Get PDF
    Present technology allows radiometric monitoring of the Earth, ocean and atmosphere from a geosynchronous platform with good spatial, spectral and temporal resolution. The proposed system could provide a capability for multispectral remote sensing with a 50 m nadir spatial resolution in the visible bands, 250 m in the 4 micron band and 1 km in the 11 micron thermal infrared band. The diffraction limited telescope has a 1 m aperture, a 10 m focal length (with a shorter focal length in the infrared) and linear and area arrays of detectors. The diffraction limited resolution applies to scenes of any brightness but for a dark low contrast scenes, the good signal to noise ratio of the system contribute to the observation capability. The capabilities of the AGP system are assessed for quantitative observations of ocean scenes. Instrument and ground system configuration are presented and projected sensor capabilities are analyzed

    Helical coaxial resonator RF filter

    Get PDF
    Helical coaxial resonator RF filte

    Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems

    Get PDF
    The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM)

    An Investigation into the Suitability of Sulfate-Reducing Bacteria as Models for Martian Forward Contamination

    Get PDF
    The NASA Planetary Protection policy requires interplanetary space missions do not compromise the target body for a current or future scientific investigation and do not pose an unacceptable risk to Earth, including biologic materials. Robotic missions to Mars pose a risk to planetary protection in the forms of forward and reverse contamination. To reduce these risks, a firm understanding of microbial response to Mars conditions is required. Sulfate-reducing bacteria are prime candidates for potential forward contamination on Mars. Understanding the potential for forward-contamination of sulfate-reducers on Mars calls for the characterization of sulfate-reducers under Mars atmosphere, temperature, and sulfate-brines. This study investigated the response of several sulfate-reducing bacteria, including spore formers and psychrophiles. The psychrophile Desulfotalea psychrophila was found to inconsistently survive positive control lab conditions, attributed to an issue shipping pure cultures. Desulfotomaculum arcticum, a spore-forming mesophilic sulfate-reducer, and Desulfuromusa ferrireducens, an iron and sulfate-reducer, were metabolically active under positive control lab conditions with complex and minimal growth medium. A wastewater treatment sulfate-reducing bacteria (SRB) isolate was subjected to sulfate + growth-medium solutions of varied concentrations (0.44 & 0.55% wt. SO42-). The wastewater SRB displayed higher cellular light-absorbance levels at delayed rates in 0.55% sulfate solutions, suggesting a greater total culture reproduction, but with increased lag time. Additional SRB were isolated from marine sediments, subjected to a shock pressure of 8.73 GPa, and returned to ideal conditions. The sulfate-concentration patterns in the impacted SRB culture suggests a destruction of culture occurred somewhere during the preparation process. The response of SRB in this investigation to Ca and Na sulfate-brines suggests that Martian sulfate deposits offer a viable energy sink to terrestrial microorganisms, and the studied SRB are capable of replication at reduced water-activity. Further investigation (i.e. sulfate cations and concentrations, temperature, pressure, etc.) may identify Martian locations at risk to forward contamination

    An Air Revitalization Model (ARM) for Regenerative Life Support Systems (RLSS)

    Get PDF
    The primary objective of the air revitalization model (ARM) is to determine the minimum buffer capacities that would be necessary for long duration space missions. Several observations are supported by the current configuration sizes: the baseline values for each gas and the day to day or month to month fluctuations that are allowed. The baseline values depend on the minimum safety tolerances and the quantities of life support consumables necessary to survive the worst case scenarios within those tolerances. Most, it not all, of these quantities can easily be determined by ARM once these tolerances are set. The day to day fluctuations also require a command decision. It is already apparent from the current configuration of ARM that the tighter these fluctuations are controlled, the more energy used, the more nonregenerable hydrazine consumed, and the larger the required capacities for the various gas generators. All of these relationships could clearly be quantified by one operational ARM

    Dynamical Formation of Close Binaries During the Pre-main-sequence Phase

    Full text link
    Solar-type binaries with short orbital periods (PcloseP_{\rm close} ≡\equiv 1 - 10 days; aa ≲\lesssim 0.1 AU) cannot form directly via fragmentation of molecular clouds or protostellar disks, yet their component masses are highly correlated, suggesting interaction during the pre-main-sequence (pre-MS) phase. Moreover, the close binary fraction of pre-MS stars is consistent with that of their MS counterparts in the field (FcloseF_{\rm close} = 2.1%). Thus we can infer that some migration mechanism operates during the early pre-MS phase (τ\tau ≲\lesssim 5 Myr) that reshapes the primordial separation distribution. We test the feasibility of this hypothesis by carrying out a population synthesis calculation which accounts for two formation channels: Kozai-Lidov (KL) oscillations and dynamical instability in triple systems. Our models incorporate (1) more realistic initial conditions compared to previous studies, (2) octupole-level effects in the secular evolution, (3) tidal energy dissipation via weak-friction equilibrium tides at small eccentricities and via non-radial dynamical oscillations at large eccentricities, and (4) the larger tidal radius of a pre-MS primary. Given a 15% triple star fraction, we simulate a close binary fraction from KL oscillations alone of FcloseF_{\rm close} ≈\approx 0.4% after τ\tau = 5 Myr, which increases to FcloseF_{\rm close} ≈\approx 0.8% by τ\tau = 5 Gyr. Dynamical ejections and disruptions of unstable coplanar triples in the disk produce solitary binaries with slightly longer periods PP ≈\approx 10 - 100 days. The remaining ≈\approx60% of close binaries with outer tertiaries, particularly those in compact coplanar configurations with log PoutP_{\rm out} (days) ≈\approx 2 - 5 (aouta_{\rm out} << 50 AU), can be explained only with substantial extra energy dissipation due to interactions with primordial gas.Comment: Accepted by ApJ; 23 pages; 8 figures; this version incorporates changes made to address comments by refere

    Spacecraft attitude detection system by stellar reference Patent

    Get PDF
    Attitude detection system using stellar references for three-axis control and spin stabilized spacecraf

    Fuse and switch functions combined within a single housing

    Get PDF
    Fuswitch provides both switch and fuse functions within a single housing. A mercury capillary is used to alternately vaporize and condense the mercury within a reservoir. The housing is impervious to mercury and the fuse portion of the device operates on the principle of the self-healing mercury fuse

    The von Karman equations, the stress function, and elastic ridges in high dimensions

    Full text link
    The elastic energy functional of a thin elastic rod or sheet is generalized to the case of an M-dimensional manifold in N-dimensional space. We derive potentials for the stress field and curvatures and find the generalized von Karman equations for a manifold in elastic equilibrium. We perform a scaling analysis of an M-1 dimensional ridge in an M = N-1 dimensional manifold. A ridge of linear size X in a manifold with thickness h << X has a width w ~ h^{1/3}X^{2/3} and a total energy E ~ h^{M} (X/h)^{M-5/3}. We also prove that the total bending energy of the ridge is exactly five times the total stretching energy. These results match those of A. Lobkovsky [Phys. Rev. E 53, 3750 (1996)] for the case of a bent plate in three dimensions.Comment: corrected references, 27 pages, RevTeX + epsf, 2 figures, Submitted to J. Math. Phy
    • …
    corecore